Lifetime prediction and design aspects of reliable lead-free non-collapsible BGA joints in LTCC packages for RF/microwave telecommunication applications

Lifetime prediction and design aspects of reliable lead-free non-collapsible BGA joints in LTCC... Purpose– The purpose of this paper is to describe the behavior of different lead-free solders (95.5Sn3.8Ag0.7Cu, i.e. SAC387 and Sn7In4.1Ag0.5Cu, i.e. SAC-In) in thermomechanically loaded non-collapsible ball grid array (BGA) joints of a low-temperature co-fired ceramic (LTCC) module. The validity of a modified Engelmaier’s model was tested to verify its capability to predict the characteristic lifetime of an LTCC module assembly implementable in field applications. Design/methodology/approach– Five printed wiring board (PWB) assemblies, each carrying eight LTCC modules, were fabricated and exposed to a temperature cycling test over a −40 to 125°C temperature range to determine the characteristic lifetimes of interconnections in the LTCC module/PWB assemblies. The failure mechanisms of the test assemblies were verified using scanning acoustic microscopy, scanning electron microscopy (SEM) and field emission SEM investigation. A stress-dependent Engelmaier’s model, adjusted for plastic-core solder ball (PCSB) BGA structures, was used to predict the characteristic lifetimes of the assemblies. Findings– Depending on the joint configuration, characteristic lifetimes of up to 1,920 cycles were achieved in the thermal cycling testing. The results showed that intergranular (creep) failures occurred primarily only in the joints containing Sn7In4.1Ag0.5Cu solder. Other primary failure mechanisms (mixed transgranular/intergranular, separation of the intermetallic compound/solder interface and cracking in the interface between the ceramic and metallization) were observed in the other joint configurations. The modified Engelmaier’s model was found to predict the lifetime of interconnections with good accuracy. The results confirmed the superiority of SAC-In solder over SAC in terms of reliability, and also proved that an air cavity structure of the module, which enhances its radio frequency (RF) performance, did not degrade the reliability of the second-level interconnections of the test assemblies. Originality/value– This paper shows the superiority of SAC-In solder over SAC387 solder in terms of reliability and verifies the applicability of the modified Engelmaier’s model as an accurate lifetime prediction method for PCSB BGA structures for the presented LTCC packages for RF/microwave telecommunication applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

Lifetime prediction and design aspects of reliable lead-free non-collapsible BGA joints in LTCC packages for RF/microwave telecommunication applications

Loading next page...
 
/lp/emerald/lifetime-prediction-and-design-aspects-of-reliable-lead-free-non-tD9sEu95Te
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0954-0911
D.O.I.
10.1108/SSMT-07-2013-0018
Publisher site
See Article on Publisher Site

Abstract

Purpose– The purpose of this paper is to describe the behavior of different lead-free solders (95.5Sn3.8Ag0.7Cu, i.e. SAC387 and Sn7In4.1Ag0.5Cu, i.e. SAC-In) in thermomechanically loaded non-collapsible ball grid array (BGA) joints of a low-temperature co-fired ceramic (LTCC) module. The validity of a modified Engelmaier’s model was tested to verify its capability to predict the characteristic lifetime of an LTCC module assembly implementable in field applications. Design/methodology/approach– Five printed wiring board (PWB) assemblies, each carrying eight LTCC modules, were fabricated and exposed to a temperature cycling test over a −40 to 125°C temperature range to determine the characteristic lifetimes of interconnections in the LTCC module/PWB assemblies. The failure mechanisms of the test assemblies were verified using scanning acoustic microscopy, scanning electron microscopy (SEM) and field emission SEM investigation. A stress-dependent Engelmaier’s model, adjusted for plastic-core solder ball (PCSB) BGA structures, was used to predict the characteristic lifetimes of the assemblies. Findings– Depending on the joint configuration, characteristic lifetimes of up to 1,920 cycles were achieved in the thermal cycling testing. The results showed that intergranular (creep) failures occurred primarily only in the joints containing Sn7In4.1Ag0.5Cu solder. Other primary failure mechanisms (mixed transgranular/intergranular, separation of the intermetallic compound/solder interface and cracking in the interface between the ceramic and metallization) were observed in the other joint configurations. The modified Engelmaier’s model was found to predict the lifetime of interconnections with good accuracy. The results confirmed the superiority of SAC-In solder over SAC in terms of reliability, and also proved that an air cavity structure of the module, which enhances its radio frequency (RF) performance, did not degrade the reliability of the second-level interconnections of the test assemblies. Originality/value– This paper shows the superiority of SAC-In solder over SAC387 solder in terms of reliability and verifies the applicability of the modified Engelmaier’s model as an accurate lifetime prediction method for PCSB BGA structures for the presented LTCC packages for RF/microwave telecommunication applications.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: May 27, 2014

Keywords: Reliability; Thermal fatigue; Engelmaier’s model; High frequency; Lead‐free solders; Low temperature co‐fired ceramics (LTCC)

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial