Knowledge acquisition of association rules from the customer-lifetime-value perspective

Knowledge acquisition of association rules from the customer-lifetime-value perspective PurposeCustomer lifetime value (CLV) scoring is highly effective when applied to marketing databases. Some researchers have extended the traditional association rule problem by associating a weight with each item in a transaction. However, studies of association rule mining have considered the relative benefits or significance of “items” rather than “transactions” belonging to different customers. Because not all customers are financially attractive to firms, it is crucial that their profitability be determined and that transactions be weighted according to CLV. This study aims to discover association rules from the CLV perspective.Design/methodology/approachThis study extended the traditional association rule problem by allowing the association of CLV weight with a transaction to reflect the interest and intensity of customer values. Furthermore, the authors proposed a new algorithm, frequent itemsets of CLV weight (FICLV), to discover frequent itemsets from CLV-weighted transactions.FindingsExperimental results from the survey data indicate that the proposed FICLV algorithm can discover valuable frequent itemsets. Moreover, the frequent itemsets identified using the FICLV algorithm outperform those discovered through conventional approaches for predicting customer purchasing itemsets in the coming period.Originality/valueThis study is the first to introduce the optimum approach for discovering frequent itemsets from transactions through considering CLV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Knowledge acquisition of association rules from the customer-lifetime-value perspective

Loading next page...
 
/lp/emerald/knowledge-acquisition-of-association-rules-from-the-customer-lifetime-3k9l5jH6P9
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
D.O.I.
10.1108/K-03-2016-0042
Publisher site
See Article on Publisher Site

Abstract

PurposeCustomer lifetime value (CLV) scoring is highly effective when applied to marketing databases. Some researchers have extended the traditional association rule problem by associating a weight with each item in a transaction. However, studies of association rule mining have considered the relative benefits or significance of “items” rather than “transactions” belonging to different customers. Because not all customers are financially attractive to firms, it is crucial that their profitability be determined and that transactions be weighted according to CLV. This study aims to discover association rules from the CLV perspective.Design/methodology/approachThis study extended the traditional association rule problem by allowing the association of CLV weight with a transaction to reflect the interest and intensity of customer values. Furthermore, the authors proposed a new algorithm, frequent itemsets of CLV weight (FICLV), to discover frequent itemsets from CLV-weighted transactions.FindingsExperimental results from the survey data indicate that the proposed FICLV algorithm can discover valuable frequent itemsets. Moreover, the frequent itemsets identified using the FICLV algorithm outperform those discovered through conventional approaches for predicting customer purchasing itemsets in the coming period.Originality/valueThis study is the first to introduce the optimum approach for discovering frequent itemsets from transactions through considering CLV.

Journal

KybernetesEmerald Publishing

Published: Mar 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off