Failure analysis of solder layer in power transistor

Failure analysis of solder layer in power transistor PurposeThe purpose of this paper is to present a failure analysis of the solder layer in a Darlington power transistor in a TO-3 package.Design/methodology/approachA failed Darlington power transistor in a TO-3 package was examined by different kinds of failure analysis techniques. At first, internal gas analysis was conducted to measure the atmosphere. Then, scanning acoustic microscopy (SAM) was performed to check the quality of the solder layers in the failed device, and the failure location was determined in the solder layer between chip and substrate. Next, the failed device was decapped to observe the defects. After removing the chip from the substrate, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were applied and the main elemental composition of the solder layer was identified.FindingsInternal gas analysis indicated that the moisture and oxygen contents exceeded the allowed maximum value. Large areas of voids were found in the solder layer by SAM. The main elemental compositions of the solder layer were identified by scanning electron microscopy and EDS. Furthermore, the valences of the chemical components in the solder layer were identified by XPS. Except for the few simple substances of the initial solder material, the chemical formulae of oxidation products in the solder layer were deduced. In addition, the root causes are also discussed.Originality/valueThis paper focuses on the solder layer failure of a power transistor. Factors such as the presence of oxygen, voids and other factors, which can cause transistor damage, were comprehensively analyzed. The analysis process is worth learning from and the results can be used to improve the reliability of power devices in this kind of package. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

Failure analysis of solder layer in power transistor

Loading next page...
 
/lp/emerald/failure-analysis-of-solder-layer-in-power-transistor-Q0evKEINlZ
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0954-0911
D.O.I.
10.1108/SSMT-07-2017-0019
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to present a failure analysis of the solder layer in a Darlington power transistor in a TO-3 package.Design/methodology/approachA failed Darlington power transistor in a TO-3 package was examined by different kinds of failure analysis techniques. At first, internal gas analysis was conducted to measure the atmosphere. Then, scanning acoustic microscopy (SAM) was performed to check the quality of the solder layers in the failed device, and the failure location was determined in the solder layer between chip and substrate. Next, the failed device was decapped to observe the defects. After removing the chip from the substrate, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were applied and the main elemental composition of the solder layer was identified.FindingsInternal gas analysis indicated that the moisture and oxygen contents exceeded the allowed maximum value. Large areas of voids were found in the solder layer by SAM. The main elemental compositions of the solder layer were identified by scanning electron microscopy and EDS. Furthermore, the valences of the chemical components in the solder layer were identified by XPS. Except for the few simple substances of the initial solder material, the chemical formulae of oxidation products in the solder layer were deduced. In addition, the root causes are also discussed.Originality/valueThis paper focuses on the solder layer failure of a power transistor. Factors such as the presence of oxygen, voids and other factors, which can cause transistor damage, were comprehensively analyzed. The analysis process is worth learning from and the results can be used to improve the reliability of power devices in this kind of package.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off