Experimental determination of fire degradation kinetic for an aeronautical polymer composite material

Experimental determination of fire degradation kinetic for an aeronautical polymer composite... PurposeThe purpose of this paper is to evaluate the fire resistance of an innovative carbon-reinforced PEKK composite for aeronautical applications. To this end, thermal degradation analysis under inert and oxidative atmosphere is carried out. Moreover, a linear model fitting approach is compared to a generally used isoconversional method to validate its reliability for kinetic triplet estimation.Design/methodology/approachThermogravimetric analysis carried out under inert and oxidative atmospheres, between 25 and 1000°C for three different heating rates (5, 15, 25°C/min), followed by a qualitative SEM observation of the samples before and after thermal treatment. After the reaction identification by TG/DTG curves, an isoconversional analysis is carried out to estimate the activation energy as a function of the reaction conversion rate. For the identified reactions, the kinetic triplet is estimated by different methods and the results are compared to evaluate their reliability.FindingsIn inert case, one global reaction, observed between 500-700°C, seems able to describe the degradation of carbon-PEKK resin. Under oxidative atmosphere, three main reactions are identified, besides the resin degradation, the other two are attributed to char and fiber oxidation. Good agreement achieved between isoconversional and linear model fitting methods in activation energy calculation. The achieved results demonstrate the high thermal resistance of PEKK associated with the ether and ketone bonds between the three aromatic groups of its monomer.Originality/valueThis paper provides a possible degradation model useful for numerical implementation in CFD calculations for aircraft components design, when exposed to high temperatures and fire conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Structural Integrity Emerald Publishing

Experimental determination of fire degradation kinetic for an aeronautical polymer composite material

Loading next page...
 
/lp/emerald/experimental-determination-of-fire-degradation-kinetic-for-an-Pl78o5rPRw
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1757-9864
D.O.I.
10.1108/IJSI-03-2017-0021
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to evaluate the fire resistance of an innovative carbon-reinforced PEKK composite for aeronautical applications. To this end, thermal degradation analysis under inert and oxidative atmosphere is carried out. Moreover, a linear model fitting approach is compared to a generally used isoconversional method to validate its reliability for kinetic triplet estimation.Design/methodology/approachThermogravimetric analysis carried out under inert and oxidative atmospheres, between 25 and 1000°C for three different heating rates (5, 15, 25°C/min), followed by a qualitative SEM observation of the samples before and after thermal treatment. After the reaction identification by TG/DTG curves, an isoconversional analysis is carried out to estimate the activation energy as a function of the reaction conversion rate. For the identified reactions, the kinetic triplet is estimated by different methods and the results are compared to evaluate their reliability.FindingsIn inert case, one global reaction, observed between 500-700°C, seems able to describe the degradation of carbon-PEKK resin. Under oxidative atmosphere, three main reactions are identified, besides the resin degradation, the other two are attributed to char and fiber oxidation. Good agreement achieved between isoconversional and linear model fitting methods in activation energy calculation. The achieved results demonstrate the high thermal resistance of PEKK associated with the ether and ketone bonds between the three aromatic groups of its monomer.Originality/valueThis paper provides a possible degradation model useful for numerical implementation in CFD calculations for aircraft components design, when exposed to high temperatures and fire conditions.

Journal

International Journal of Structural IntegrityEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off