Experimental and numerical studies on flow behavior of surface defects in the heavy rail rolling

Experimental and numerical studies on flow behavior of surface defects in the heavy rail rolling PurposeSurface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects on continuous casting slabs. This work aims to trace the original surface defect during the whole heavy rail rolling and avoid black line surface defect that appears on the surface of heavy rail finial product.Design/methodology/approachArtificial round hole-shaped surface defects on the surface of continuous casting slab during the hot rolling of 60 kg/m heavy rail are analyzed experimentally and by means of explicit dynamic finite element method (FEM) and modified model rebuilding method.FindingsThe calculated results of surface defect locations of heavy rail finial product are in good agreement with the experimental ones. It is shown that the explicit dynamic FEM and modified model rebuilding method can be used effectively to predict the flow behavior of surface defects in the hot rolling of 60 kg/m heavy rail.Originality/valueThe three-dimensional finite element model for whole heavy rail rolling is built using explicit dynamic code and modified model rebuilding method. Flow behavior of black lines is studied in the 60-kg/m heavy rail rolling. The simulation results of six typical points are in good agreement with the experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Experimental and numerical studies on flow behavior of surface defects in the heavy rail rolling

Loading next page...
 
/lp/emerald/experimental-and-numerical-studies-on-flow-behavior-of-surface-defects-WBkRn7nJxD
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
D.O.I.
10.1108/EC-05-2017-0164
Publisher site
See Article on Publisher Site

Abstract

PurposeSurface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects on continuous casting slabs. This work aims to trace the original surface defect during the whole heavy rail rolling and avoid black line surface defect that appears on the surface of heavy rail finial product.Design/methodology/approachArtificial round hole-shaped surface defects on the surface of continuous casting slab during the hot rolling of 60 kg/m heavy rail are analyzed experimentally and by means of explicit dynamic finite element method (FEM) and modified model rebuilding method.FindingsThe calculated results of surface defect locations of heavy rail finial product are in good agreement with the experimental ones. It is shown that the explicit dynamic FEM and modified model rebuilding method can be used effectively to predict the flow behavior of surface defects in the hot rolling of 60 kg/m heavy rail.Originality/valueThe three-dimensional finite element model for whole heavy rail rolling is built using explicit dynamic code and modified model rebuilding method. Flow behavior of black lines is studied in the 60-kg/m heavy rail rolling. The simulation results of six typical points are in good agreement with the experimental results.

Journal

Engineering ComputationsEmerald Publishing

Published: May 8, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off