Efficient automatic discrete adjoint sensitivity computation for topology optimization – heat conduction applications

Efficient automatic discrete adjoint sensitivity computation for topology optimization – heat... PurposeTopology optimization is a method used for developing optimized geometric designs by distributing material pixels in a given design space that maximizes a chosen quantity of interest (QoI) subject to constraints. The purpose of this study is to develop a problem-agnostic automatic differentiation (AD) framework to compute sensitivities of the QoI required for density distribution-based topology optimization in an unstructured co-located cell-centered finite volume framework. Using this AD framework, the authors develop and demonstrate the topology optimization procedure for multi-dimensional steady-state heat conduction problems.Design/methodology/approachTopology optimization is performed using the well-established solid isotropic material with penalization approach. The method of moving asymptotes, a gradient-based optimization algorithm, is used to perform the optimization. The sensitivities of the QoI with respect to design variables, required for optimization algorithm, are computed using a discrete adjoint method with a novel AD library named residual automatic partial differentiator (Rapid).FindingsTopologies that maximize or minimize relevant quantities of interest in heat conduction applications are presented. The efficacy of the technique is demonstrated using a variety of realistic heat transfer applications in both two and three dimensions, in conjugate heat transfer problems with finite conductivity ratios and in non-rectangular/non-cuboidal domains.Originality/valueIn contrast to most published work which has either used finite element methods or Cartesian finite volume methods for transport applications, the topology optimization procedure is developed in a general unstructured finite volume framework. This permits topology optimization for flow and heat transfer applications in complex design domains such as those encountered in industry. In addition, the Rapid library is designed to provide a problem-agnostic pathway to automatically compute all required derivatives to machine accuracy. This obviates the necessity to write new code for finding sensitivities when new physics are added or new cost functions are considered and permits general-purpose implementations of topology optimization for complex industrial applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Efficient automatic discrete adjoint sensitivity computation for topology optimization – heat conduction applications

Loading next page...
 
/lp/emerald/efficient-automatic-discrete-adjoint-sensitivity-computation-for-yjJahTL0hG
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
D.O.I.
10.1108/HFF-01-2017-0011
Publisher site
See Article on Publisher Site

Abstract

PurposeTopology optimization is a method used for developing optimized geometric designs by distributing material pixels in a given design space that maximizes a chosen quantity of interest (QoI) subject to constraints. The purpose of this study is to develop a problem-agnostic automatic differentiation (AD) framework to compute sensitivities of the QoI required for density distribution-based topology optimization in an unstructured co-located cell-centered finite volume framework. Using this AD framework, the authors develop and demonstrate the topology optimization procedure for multi-dimensional steady-state heat conduction problems.Design/methodology/approachTopology optimization is performed using the well-established solid isotropic material with penalization approach. The method of moving asymptotes, a gradient-based optimization algorithm, is used to perform the optimization. The sensitivities of the QoI with respect to design variables, required for optimization algorithm, are computed using a discrete adjoint method with a novel AD library named residual automatic partial differentiator (Rapid).FindingsTopologies that maximize or minimize relevant quantities of interest in heat conduction applications are presented. The efficacy of the technique is demonstrated using a variety of realistic heat transfer applications in both two and three dimensions, in conjugate heat transfer problems with finite conductivity ratios and in non-rectangular/non-cuboidal domains.Originality/valueIn contrast to most published work which has either used finite element methods or Cartesian finite volume methods for transport applications, the topology optimization procedure is developed in a general unstructured finite volume framework. This permits topology optimization for flow and heat transfer applications in complex design domains such as those encountered in industry. In addition, the Rapid library is designed to provide a problem-agnostic pathway to automatically compute all required derivatives to machine accuracy. This obviates the necessity to write new code for finding sensitivities when new physics are added or new cost functions are considered and permits general-purpose implementations of topology optimization for complex industrial applications.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Feb 5, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off