CUF scaling effect on contact angle and threshold pressure

CUF scaling effect on contact angle and threshold pressure PurposeThis paper aims to present experimental and finite volume method (FVM)-based simulation studies on the scaling effect on the capillary contact angle and entrant pressure for a three-dimensional encapsulation process of ball-grid array (BGA).Design/methodology/approachWith the development of various sizes of BGA packages, the scaling effect of BGA model on capillary underfill (CUF) process is investigated together with the influences of different industrial standard solder bump arrangements and dispensing methods used as case study.FindingsThe experimental results agree well to the simulation findings with minimal deviation in filling time and similar flow front profiles for all setups. The results revealed that the capillary contact angle of flow front decreases in scale-up model with larger gap height observed and lengthens the encapsulation process. Statistical correlation studies are conducted and accurate regression equations are obtained to relate the gap height to the completion filling time and contact angle. CUF threshold capillary pressures were computed based on Leverett-J function and found to be increasing with the scale size of the package.Practical implicationsThese statistical data provide accurate insights into the impact of BGA’s scale sizes to the CUF process that will be benefiting the future design of BGA package. This study provided electronic designers with profound understanding on the scaling effect in CUF process of BGA, which may be extended to the future development of miniature-sized BGA and multi-stack device.Originality/valueThis study relates the flow behaviour of encapsulant to its capillary contact angle and Leverett-J pressure threshold, in the CUF process of different BGA and dispensing conditions. To date, no research has been found to predict the threshold pressure on the gap between the chip and substrate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soldering & Surface Mount Technology Emerald Publishing

CUF scaling effect on contact angle and threshold pressure

Loading next page...
 
/lp/emerald/cuf-scaling-effect-on-contact-angle-and-threshold-pressure-Rs2RUYWXmL
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0954-0911
D.O.I.
10.1108/SSMT-09-2016-0020
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to present experimental and finite volume method (FVM)-based simulation studies on the scaling effect on the capillary contact angle and entrant pressure for a three-dimensional encapsulation process of ball-grid array (BGA).Design/methodology/approachWith the development of various sizes of BGA packages, the scaling effect of BGA model on capillary underfill (CUF) process is investigated together with the influences of different industrial standard solder bump arrangements and dispensing methods used as case study.FindingsThe experimental results agree well to the simulation findings with minimal deviation in filling time and similar flow front profiles for all setups. The results revealed that the capillary contact angle of flow front decreases in scale-up model with larger gap height observed and lengthens the encapsulation process. Statistical correlation studies are conducted and accurate regression equations are obtained to relate the gap height to the completion filling time and contact angle. CUF threshold capillary pressures were computed based on Leverett-J function and found to be increasing with the scale size of the package.Practical implicationsThese statistical data provide accurate insights into the impact of BGA’s scale sizes to the CUF process that will be benefiting the future design of BGA package. This study provided electronic designers with profound understanding on the scaling effect in CUF process of BGA, which may be extended to the future development of miniature-sized BGA and multi-stack device.Originality/valueThis study relates the flow behaviour of encapsulant to its capillary contact angle and Leverett-J pressure threshold, in the CUF process of different BGA and dispensing conditions. To date, no research has been found to predict the threshold pressure on the gap between the chip and substrate.

Journal

Soldering & Surface Mount TechnologyEmerald Publishing

Published: Sep 4, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial