Analysis of unsteady radial forces of multistage centrifugal pump with double volute

Analysis of unsteady radial forces of multistage centrifugal pump with double volute PurposeRadial vibration of horizontal centrifugal pump has a close association with radial exciting forces. The purpose of this paper is to analyze the unsteady radial force in multistage centrifugal pump with double volute in detail and investigate the relevance of static pressure, radial force and radial vibration.Design/methodology/approachThe unsteady numerical simulation with realizable k-ε turbulence model was carried out for a multistage centrifugal pump with double volute using computational fluid dynamics codes Fluent. The performance tests were conducted by use of a closed loop system and performance curves from numerical simulation agree with that of experiment. Vibration tests were carried out by vibration probes instrumented on the bearing cover of pump near no-driven end. Fast Fourier transform was used to obtain the frequency components of radial forces on the impellers from numerical simulation, which are compared with ones of radial vibration from experiment in Y and Z direction. And the static pressure distributions in the impeller were analyzed under different flow rates.FindingsThe symmetrical double volute can effectively balance radial forces. The maximum radial force and vibration velocity appear at 0.6 Q among the three flow rates 0.6 Q, Q and 1.2 Q. The frequencies corresponding to relatively large amplitude of vibration velocities and radial forces on the impellers in Y direction are blade passing frequency of the impellers. Blade passing frequency of first-stage impeller and shaft frequency are predominating in Z direction. It indicates that the radial vibration of centrifugal pump is closely related to the unsteady radial force.Originality/valueThe unsteady radial forces of the impeller in multistage centrifugal pump with double volute were comprehensively analyzed. The radial forces should be considered to balance during the design of multistage centrifugal pump. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Computations Emerald Publishing

Analysis of unsteady radial forces of multistage centrifugal pump with double volute

Loading next page...
 
/lp/emerald/analysis-of-unsteady-radial-forces-of-multistage-centrifugal-pump-with-mH2MKbOb0Y
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0264-4401
D.O.I.
10.1108/EC-12-2016-0445
Publisher site
See Article on Publisher Site

Abstract

PurposeRadial vibration of horizontal centrifugal pump has a close association with radial exciting forces. The purpose of this paper is to analyze the unsteady radial force in multistage centrifugal pump with double volute in detail and investigate the relevance of static pressure, radial force and radial vibration.Design/methodology/approachThe unsteady numerical simulation with realizable k-ε turbulence model was carried out for a multistage centrifugal pump with double volute using computational fluid dynamics codes Fluent. The performance tests were conducted by use of a closed loop system and performance curves from numerical simulation agree with that of experiment. Vibration tests were carried out by vibration probes instrumented on the bearing cover of pump near no-driven end. Fast Fourier transform was used to obtain the frequency components of radial forces on the impellers from numerical simulation, which are compared with ones of radial vibration from experiment in Y and Z direction. And the static pressure distributions in the impeller were analyzed under different flow rates.FindingsThe symmetrical double volute can effectively balance radial forces. The maximum radial force and vibration velocity appear at 0.6 Q among the three flow rates 0.6 Q, Q and 1.2 Q. The frequencies corresponding to relatively large amplitude of vibration velocities and radial forces on the impellers in Y direction are blade passing frequency of the impellers. Blade passing frequency of first-stage impeller and shaft frequency are predominating in Z direction. It indicates that the radial vibration of centrifugal pump is closely related to the unsteady radial force.Originality/valueThe unsteady radial forces of the impeller in multistage centrifugal pump with double volute were comprehensively analyzed. The radial forces should be considered to balance during the design of multistage centrifugal pump.

Journal

Engineering ComputationsEmerald Publishing

Published: May 8, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off