A new two-stage grey evaluation decision-making method for interval grey numbers

A new two-stage grey evaluation decision-making method for interval grey numbers PurposeIn multi-criteria decision-making with interval grey number information, decision makers usually take a risk to rank or choose some very similar alternatives. Additionally, when evaluating only one alternative, decision makers can only obtain a specific value using traditional decision-making methods and may find it hard to cluster the alternatives to the “correct class” because these methods lack predetermined reference points. To overcome this problem, this paper aims to propose a two-stage grey decision-making method.Design/methodology/approachFirst, a new type of clustering method for interval grey numbers is designed by proposing a new possibility function for grey numbers. Based on this clustering method, a new grey clustering evaluation model for interval grey numbers is proposed by which decision makers can obtain the grade rating information of each alternative. Then, according to the grey clustering evaluation model, a new two-stage decision-making method is introduced to solve the problem that some alternatives are very similar by designing a grey comprehensive decision coefficient of alternatives.FindingsThe authors propose a new grey clustering evaluation model to deal with interval grey numbers. They design a new model to obtain the membership degree for the interval grey numbers and then propose a new grey clustering evaluation model, which can evaluate only one alternative by predefined grey classes. Then, by the grey comprehensive decision coefficient, a two-stage grey evaluation decision-making method is put forward to solve the problem that some alternatives are very close and hard to be distinguished.Originality/valueA new grey clustering evaluation model is proposed, which can evaluate only one alternative by predefined grey classes. A two-stage grey evaluation decision-making method is given to solve the problem that some alternatives are very close and hard to be distinguished. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

A new two-stage grey evaluation decision-making method for interval grey numbers

Kybernetes , Volume 47 (4): 15 – Apr 3, 2018

Loading next page...
 
/lp/emerald/a-new-two-stage-grey-evaluation-decision-making-method-for-interval-TdD0juB40w
Publisher
Emerald Group Publishing Limited
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
D.O.I.
10.1108/K-06-2017-0214
Publisher site
See Article on Publisher Site

Abstract

PurposeIn multi-criteria decision-making with interval grey number information, decision makers usually take a risk to rank or choose some very similar alternatives. Additionally, when evaluating only one alternative, decision makers can only obtain a specific value using traditional decision-making methods and may find it hard to cluster the alternatives to the “correct class” because these methods lack predetermined reference points. To overcome this problem, this paper aims to propose a two-stage grey decision-making method.Design/methodology/approachFirst, a new type of clustering method for interval grey numbers is designed by proposing a new possibility function for grey numbers. Based on this clustering method, a new grey clustering evaluation model for interval grey numbers is proposed by which decision makers can obtain the grade rating information of each alternative. Then, according to the grey clustering evaluation model, a new two-stage decision-making method is introduced to solve the problem that some alternatives are very similar by designing a grey comprehensive decision coefficient of alternatives.FindingsThe authors propose a new grey clustering evaluation model to deal with interval grey numbers. They design a new model to obtain the membership degree for the interval grey numbers and then propose a new grey clustering evaluation model, which can evaluate only one alternative by predefined grey classes. Then, by the grey comprehensive decision coefficient, a two-stage grey evaluation decision-making method is put forward to solve the problem that some alternatives are very close and hard to be distinguished.Originality/valueA new grey clustering evaluation model is proposed, which can evaluate only one alternative by predefined grey classes. A two-stage grey evaluation decision-making method is given to solve the problem that some alternatives are very close and hard to be distinguished.

Journal

KybernetesEmerald Publishing

Published: Apr 3, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off