Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Wireless measurement for passive pressure sensors in high temperature environment

Wireless measurement for passive pressure sensors in high temperature environment Purpose – Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper proposes a high-temperature pressure measurement system for wireless passive pressure sensors on the basis of inductively coupled LC resonant circuits. Design/methodology/approach – This paper begins with a general introduction to the high-temperature pressure measurement system, which consists of a reader antenna inductively coupled to the sensor circuit, a readout unit and a heat insulation unit. The design and fabrication of the proposed measurement system are then described in detail. Findings – A wireless passive pressure sensor without an air channel is fabricated using high-temperature co-fired ceramics (HTCC) technology and its signal is measured by the designed measurement system. The designed heat insulation unit keeps the reader antenna in a safe environment of 159.5°C when the passive sensor is located in a 900°C high-temperature zone continuously for 0.5 h. The proposed system can effectively detect the sensor’s resonance frequency variation in a high bandwidth from 1 to 100 MHz with a frequency resolution of 0.006 MHz, tested from room temperature to 500°C for 30 min. Originality/value – Expensive and bulky equipment (impedance analyzers or network analyzers) restrict the use of the readout method outside the laboratory environment. This paper shows that a novel readout circuit can replace the laboratory equipment to demodulate the measured pressure by extracting the various sensors’ resonant frequency. The proposed measurement system realizes automatic and continuous pressure monitoring in a high-temperature environment with a coupled distance of 2.5 cm. The research finding is meaningful for the measurement of passive pressure sensors under a wide temperature range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Sensor Review Emerald Publishing

Wireless measurement for passive pressure sensors in high temperature environment

Loading next page...
 
/lp/emerald-publishing/wireless-measurement-for-passive-pressure-sensors-in-high-temperature-3JPGiOF0P0
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0260-2288
DOI
10.1108/SR-05-2014-649
Publisher site
See Article on Publisher Site

Abstract

Purpose – Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper proposes a high-temperature pressure measurement system for wireless passive pressure sensors on the basis of inductively coupled LC resonant circuits. Design/methodology/approach – This paper begins with a general introduction to the high-temperature pressure measurement system, which consists of a reader antenna inductively coupled to the sensor circuit, a readout unit and a heat insulation unit. The design and fabrication of the proposed measurement system are then described in detail. Findings – A wireless passive pressure sensor without an air channel is fabricated using high-temperature co-fired ceramics (HTCC) technology and its signal is measured by the designed measurement system. The designed heat insulation unit keeps the reader antenna in a safe environment of 159.5°C when the passive sensor is located in a 900°C high-temperature zone continuously for 0.5 h. The proposed system can effectively detect the sensor’s resonance frequency variation in a high bandwidth from 1 to 100 MHz with a frequency resolution of 0.006 MHz, tested from room temperature to 500°C for 30 min. Originality/value – Expensive and bulky equipment (impedance analyzers or network analyzers) restrict the use of the readout method outside the laboratory environment. This paper shows that a novel readout circuit can replace the laboratory equipment to demodulate the measured pressure by extracting the various sensors’ resonant frequency. The proposed measurement system realizes automatic and continuous pressure monitoring in a high-temperature environment with a coupled distance of 2.5 cm. The research finding is meaningful for the measurement of passive pressure sensors under a wide temperature range.

Journal

Sensor ReviewEmerald Publishing

Published: Mar 16, 2015

There are no references for this article.