Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper proposes a high-temperature pressure measurement system for wireless passive pressure sensors on the basis of inductively coupled LC resonant circuits. Design/methodology/approach – This paper begins with a general introduction to the high-temperature pressure measurement system, which consists of a reader antenna inductively coupled to the sensor circuit, a readout unit and a heat insulation unit. The design and fabrication of the proposed measurement system are then described in detail. Findings – A wireless passive pressure sensor without an air channel is fabricated using high-temperature co-fired ceramics (HTCC) technology and its signal is measured by the designed measurement system. The designed heat insulation unit keeps the reader antenna in a safe environment of 159.5°C when the passive sensor is located in a 900°C high-temperature zone continuously for 0.5 h. The proposed system can effectively detect the sensor’s resonance frequency variation in a high bandwidth from 1 to 100 MHz with a frequency resolution of 0.006 MHz, tested from room temperature to 500°C for 30 min. Originality/value – Expensive and bulky equipment (impedance analyzers or network analyzers) restrict the use of the readout method outside the laboratory environment. This paper shows that a novel readout circuit can replace the laboratory equipment to demodulate the measured pressure by extracting the various sensors’ resonant frequency. The proposed measurement system realizes automatic and continuous pressure monitoring in a high-temperature environment with a coupled distance of 2.5 cm. The research finding is meaningful for the measurement of passive pressure sensors under a wide temperature range.
Sensor Review – Emerald Publishing
Published: Mar 16, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.