What the fake? Assessing the extent of networked political spamming and bots in the propagation of #fakenews on Twitter

What the fake? Assessing the extent of networked political spamming and bots in the propagation... PurposeThe purpose of this paper is to examine one of the largest data sets on the hashtag use of #fakenews that comprises over 14m tweets sent by more than 2.4m users.Design/methodology/approachTweets referencing the hashtag (#fakenews) were collected for a period of over one year from January 3 to May 7 of 2018. Bot detection tools were employed, and the most retweeted posts, most mentions and most hashtags as well as the top 50 most active users in terms of the frequency of their tweets were analyzed.FindingsThe majority of the top 50 Twitter users are more likely to be automated bots, while certain users’ posts like that are sent by President Donald Trump dominate the most retweeted posts that always associate mainstream media with fake news. The most used words and hashtags show that major news organizations are frequently referenced with a focus on CNN that is often mentioned in negative ways.Research limitations/implicationsThe research study is limited to the examination of Twitter data, while ethnographic methods like interviews or surveys are further needed to complement these findings. Though the data reported here do not prove direct effects, the implications of the research provide a vital framework for assessing and diagnosing the networked spammers and main actors that have been pivotal in shaping discourses around fake news on social media. These discourses, which are sometimes assisted by bots, can create a potential influence on audiences and their trust in mainstream media and understanding of what fake news is.Originality/valueThis paper offers results on one of the first empirical research studies on the propagation of fake news discourse on social media by shedding light on the most active Twitter users who discuss and mention the term “#fakenews” in connection to other news organizations, parties and related figures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Online Information Review Emerald Publishing

What the fake? Assessing the extent of networked political spamming and bots in the propagation of #fakenews on Twitter

Online Information Review, Volume 43 (1): 19 – Feb 11, 2019

Loading next page...
 
/lp/emerald-publishing/what-the-fake-assessing-the-extent-of-networked-political-spamming-and-3hudS0lb5W
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1468-4527
D.O.I.
10.1108/OIR-02-2018-0065
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to examine one of the largest data sets on the hashtag use of #fakenews that comprises over 14m tweets sent by more than 2.4m users.Design/methodology/approachTweets referencing the hashtag (#fakenews) were collected for a period of over one year from January 3 to May 7 of 2018. Bot detection tools were employed, and the most retweeted posts, most mentions and most hashtags as well as the top 50 most active users in terms of the frequency of their tweets were analyzed.FindingsThe majority of the top 50 Twitter users are more likely to be automated bots, while certain users’ posts like that are sent by President Donald Trump dominate the most retweeted posts that always associate mainstream media with fake news. The most used words and hashtags show that major news organizations are frequently referenced with a focus on CNN that is often mentioned in negative ways.Research limitations/implicationsThe research study is limited to the examination of Twitter data, while ethnographic methods like interviews or surveys are further needed to complement these findings. Though the data reported here do not prove direct effects, the implications of the research provide a vital framework for assessing and diagnosing the networked spammers and main actors that have been pivotal in shaping discourses around fake news on social media. These discourses, which are sometimes assisted by bots, can create a potential influence on audiences and their trust in mainstream media and understanding of what fake news is.Originality/valueThis paper offers results on one of the first empirical research studies on the propagation of fake news discourse on social media by shedding light on the most active Twitter users who discuss and mention the term “#fakenews” in connection to other news organizations, parties and related figures.

Journal

Online Information ReviewEmerald Publishing

Published: Feb 11, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off