Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

What Role for Libraries in Learning Analytics?

What Role for Libraries in Learning Analytics? PurposeThis case study provides an overview of the development of an institution wide approach to learning analytics at the University of Wollongong (UOW) and the inclusion of library data drawn from the Library Cube. Design/methodology/approachThe Student Support & Education Analytics (SSEA) team at UOW is tasked with creating policy, frameworks and infrastructure for the systematic capture, mapping and analysis of data from the across the University. The initial dataset includes: logfile data from Moodle sites, Library Cube, student administration data, tutorials and student support service usage data. Using the learning analytics data warehouse UOW is developing new models for analysis and visualisation with a focus on the provision of near real-time data to academic staff and students to optimise learning opportunities.FindingsThe distinct advantage of the learning analytics model is that the selected datasets are updated weekly, enabling near real time monitoring and intervention where required. Inclusion of Library data with the other often disparate datasets from across the University has enabled development of a comprehensive platform for learning analytics. Future work will include the development of predictive models using the rapidly growing learning analytics data warehouse.Practical implicationsData warehousing infrastructure, the systematic capture and exporting of relevant library datasets are requisite for the consideration of library data in Learning Analytics. Originality/valueWhat was not anticipated five years ago when the Value Cube was first realised, was the development of learning analytic services at UOW. The Cube afforded UWL considerable advantage: the framework for data harvesting and analysis was established, ready for inclusion within learning analytics datasets and subsequent reporting to faculty. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Performance Measurement and Metrics Emerald Publishing

What Role for Libraries in Learning Analytics?

Loading next page...
 
/lp/emerald-publishing/what-role-for-libraries-in-learning-analytics-iVMKn5EVdR
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1467-8047
DOI
10.1108/PMM-04-2016-0020
Publisher site
See Article on Publisher Site

Abstract

PurposeThis case study provides an overview of the development of an institution wide approach to learning analytics at the University of Wollongong (UOW) and the inclusion of library data drawn from the Library Cube. Design/methodology/approachThe Student Support & Education Analytics (SSEA) team at UOW is tasked with creating policy, frameworks and infrastructure for the systematic capture, mapping and analysis of data from the across the University. The initial dataset includes: logfile data from Moodle sites, Library Cube, student administration data, tutorials and student support service usage data. Using the learning analytics data warehouse UOW is developing new models for analysis and visualisation with a focus on the provision of near real-time data to academic staff and students to optimise learning opportunities.FindingsThe distinct advantage of the learning analytics model is that the selected datasets are updated weekly, enabling near real time monitoring and intervention where required. Inclusion of Library data with the other often disparate datasets from across the University has enabled development of a comprehensive platform for learning analytics. Future work will include the development of predictive models using the rapidly growing learning analytics data warehouse.Practical implicationsData warehousing infrastructure, the systematic capture and exporting of relevant library datasets are requisite for the consideration of library data in Learning Analytics. Originality/valueWhat was not anticipated five years ago when the Value Cube was first realised, was the development of learning analytic services at UOW. The Cube afforded UWL considerable advantage: the framework for data harvesting and analysis was established, ready for inclusion within learning analytics datasets and subsequent reporting to faculty.

Journal

Performance Measurement and MetricsEmerald Publishing

Published: Jul 11, 2016

There are no references for this article.