Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Volumetric view planning for 3D reconstruction with multiple manipulators

Volumetric view planning for 3D reconstruction with multiple manipulators Purpose – This paper aims to propose a new view planning method which can be used to calculate the next-best-view (NBV) for multiple manipulators simultaneously and build an automated three-dimensional (3D) object reconstruction system, which is based on the proposed method and can adapt to various industrial applications. Design/methodology/approach – The entire 3D space is encoded with octree, which marks the voxels with different tags. A set of candidate viewpoints is generated, filtered and evaluated. The viewpoint with the highest score is selected as the NBV. Findings – The proposed method is able to make the multiple manipulators, equipped with “eye-in-hand” RGB-D sensors, work together to accelerate the object reconstruction process. Originality/value – Compared to the existed approaches, the proposed method in this paper is fast, computationally efficient, has low memory cost and can be used in actual industrial productions where the multiple different manipulators exist. And, more notably, a new algorithm is designed to speed up the generation and filtration of the candidate viewpoints, which can guarantee both speed and quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Robot: An International Journal Emerald Publishing

Volumetric view planning for 3D reconstruction with multiple manipulators

Loading next page...
 
/lp/emerald-publishing/volumetric-view-planning-for-3d-reconstruction-with-multiple-8t6c5HWPSk
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0143-991X
DOI
10.1108/IR-05-2015-0110
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper aims to propose a new view planning method which can be used to calculate the next-best-view (NBV) for multiple manipulators simultaneously and build an automated three-dimensional (3D) object reconstruction system, which is based on the proposed method and can adapt to various industrial applications. Design/methodology/approach – The entire 3D space is encoded with octree, which marks the voxels with different tags. A set of candidate viewpoints is generated, filtered and evaluated. The viewpoint with the highest score is selected as the NBV. Findings – The proposed method is able to make the multiple manipulators, equipped with “eye-in-hand” RGB-D sensors, work together to accelerate the object reconstruction process. Originality/value – Compared to the existed approaches, the proposed method in this paper is fast, computationally efficient, has low memory cost and can be used in actual industrial productions where the multiple different manipulators exist. And, more notably, a new algorithm is designed to speed up the generation and filtration of the candidate viewpoints, which can guarantee both speed and quality.

Journal

Industrial Robot: An International JournalEmerald Publishing

Published: Oct 19, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month