Volatility behaviour of stock index futures in China: a bivariate GARCH approach

Volatility behaviour of stock index futures in China: a bivariate GARCH approach Purpose – This paper aims to investigate the volatility transmission and dynamics in China Securities Index (CSI) 300 index futures market. Design/methodology/approach – This paper applies the bivariate Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models using high frequency data. Estimates for the bivariate GARCH models are obtained by maximising the log-likelihood of the probability density function of a conditional Student’s t distribution. Findings – This empirical analysis yields a few interesting results: there is a one-way feedback of volatility transmission from the CSI 300 index futures to spot returns, suggesting index futures market leads the spot market; volatility response to past bad news is asymmetric for both markets; volatility can be intensified by the disequilibrium between spot and futures prices; and trading volume has significant impact on volatility for both markets. These results reveal new evidence on the informational efficiency of the CSI 300 index futures market compared to earlier studies. Originality/value – This paper shows that the CSI 300 index futures market has improved in terms of price discovery one year after its existence compared to its early days. This is an important finding for market participants and regulators. Further, this study considers the volatility response to news, market disequilibrium and trading volume. The findings are thus useful for financial risk management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Studies in Economics and Finance Emerald Publishing

Volatility behaviour of stock index futures in China: a bivariate GARCH approach

Studies in Economics and Finance, Volume 32 (1): 27 – Mar 2, 2015

Loading next page...
 
/lp/emerald-publishing/volatility-behaviour-of-stock-index-futures-in-china-a-bivariate-garch-zb8CbTW49w
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1086-7376
DOI
10.1108/SEF-10-2013-0158
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper aims to investigate the volatility transmission and dynamics in China Securities Index (CSI) 300 index futures market. Design/methodology/approach – This paper applies the bivariate Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC) Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models using high frequency data. Estimates for the bivariate GARCH models are obtained by maximising the log-likelihood of the probability density function of a conditional Student’s t distribution. Findings – This empirical analysis yields a few interesting results: there is a one-way feedback of volatility transmission from the CSI 300 index futures to spot returns, suggesting index futures market leads the spot market; volatility response to past bad news is asymmetric for both markets; volatility can be intensified by the disequilibrium between spot and futures prices; and trading volume has significant impact on volatility for both markets. These results reveal new evidence on the informational efficiency of the CSI 300 index futures market compared to earlier studies. Originality/value – This paper shows that the CSI 300 index futures market has improved in terms of price discovery one year after its existence compared to its early days. This is an important finding for market participants and regulators. Further, this study considers the volatility response to news, market disequilibrium and trading volume. The findings are thus useful for financial risk management.

Journal

Studies in Economics and FinanceEmerald Publishing

Published: Mar 2, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off