Using Twitter sentiment and emotions analysis of Google Trends for decisions making

Using Twitter sentiment and emotions analysis of Google Trends for decisions making PurposeAn ever-growing body of knowledge demonstrates the correlation among real-world phenomena and search query data issued on Google, as showed in the literature survey introduced in the following. The purpose of this paper is to introduce a pipeline, implemented as a web service, which, starting with recent Google Trends, allows a decision maker to monitor Twitter’s sentiment regarding these trends, enabling users to choose geographic areas for their monitors. In addition to the positive/negative sentiments about Google Trends, the pipeline offers the ability to view, on the same dashboard, the emotions that Google Trends triggers in the Twitter population. Such a set of tools, allows, as a whole, monitoring real-time on Twitter the feelings about Google Trends that would otherwise only fall into search statistics, even if useful. As a whole, the pipeline has no claim of prediction over the trends it tracks. Instead, it aims to provide a user with guidance about Google Trends, which, as the scientific literature demonstrates, is related to many real-world phenomena (e.g. epidemiology, economy, political science).Design/methodology/approachThe proposed experimental framework allows the integration of Google search query data and Twitter social data. As new trends emerge in Google searches, the pipeline interrogates Twitter to track, also geographically, the feelings and emotions of Twitter users about new trends. The core of the pipeline is represented by a sentiment analysis framework that make use of a Bayesian machine learning device exploiting deep natural language processing modules to assign emotions and sentiment orientations to a collection of tweets geolocalized on the microblogging platform. The pipeline is accessible as a web service for any user authorized with credentials.FindingsThe employment of the pipeline for three different monitoring task (i.e. consumer electronics, healthcare, and politics) shows the plausibility of the proposed approach in order to measure social media sentiments and emotions concerning the trends emerged on Google searches.Originality/valueThe proposed approach aims to bridge the gap among Google search query data and sentiments that emerge on Twitter about these trends. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Program: electronic library and information systems Emerald Publishing

Using Twitter sentiment and emotions analysis of Google Trends for decisions making

Loading next page...
 
/lp/emerald-publishing/using-twitter-sentiment-and-emotions-analysis-of-google-trends-for-ODi6Fywg0V
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0033-0337
DOI
10.1108/PROG-02-2016-0015
Publisher site
See Article on Publisher Site

Abstract

PurposeAn ever-growing body of knowledge demonstrates the correlation among real-world phenomena and search query data issued on Google, as showed in the literature survey introduced in the following. The purpose of this paper is to introduce a pipeline, implemented as a web service, which, starting with recent Google Trends, allows a decision maker to monitor Twitter’s sentiment regarding these trends, enabling users to choose geographic areas for their monitors. In addition to the positive/negative sentiments about Google Trends, the pipeline offers the ability to view, on the same dashboard, the emotions that Google Trends triggers in the Twitter population. Such a set of tools, allows, as a whole, monitoring real-time on Twitter the feelings about Google Trends that would otherwise only fall into search statistics, even if useful. As a whole, the pipeline has no claim of prediction over the trends it tracks. Instead, it aims to provide a user with guidance about Google Trends, which, as the scientific literature demonstrates, is related to many real-world phenomena (e.g. epidemiology, economy, political science).Design/methodology/approachThe proposed experimental framework allows the integration of Google search query data and Twitter social data. As new trends emerge in Google searches, the pipeline interrogates Twitter to track, also geographically, the feelings and emotions of Twitter users about new trends. The core of the pipeline is represented by a sentiment analysis framework that make use of a Bayesian machine learning device exploiting deep natural language processing modules to assign emotions and sentiment orientations to a collection of tweets geolocalized on the microblogging platform. The pipeline is accessible as a web service for any user authorized with credentials.FindingsThe employment of the pipeline for three different monitoring task (i.e. consumer electronics, healthcare, and politics) shows the plausibility of the proposed approach in order to measure social media sentiments and emotions concerning the trends emerged on Google searches.Originality/valueThe proposed approach aims to bridge the gap among Google search query data and sentiments that emerge on Twitter about these trends.

Journal

Program: electronic library and information systemsEmerald Publishing

Published: Sep 5, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off