Conceptual arguments favouring a relational rather than a transactional approach to the study of buyer‐seller relationships are now well understood. However, attempts to quantify the factors contributing towards relationship quality have been held back by the complexity of the underlying factors and their interrelatedness. Traditional regression techniques are not effective in analysing data with high levels of multi‐collinearity and missing information, typical in many studies of buyer behaviour. Makes use of a relatively new technique – neural network analysis – to try to quantify the factors contributing to buyer‐seller relationship quality. The technique uses a statistically‐based learning procedure modelled on the workings of the human brain which quantifies the relationship between input and output variables through an intermediate “hidden” variable level analogous to the brain. For this study, a neural network was developed with two outcome components of relationship quality (relationship satisfaction and trust), and five input antecedents (the salesperson′s sales orientation, customer orientation, expertise, ethics and the relationship′s duration). In a comparison of multiple regression and neural network techniques, the latter was found to give statistically more significant outcomes. New applications within marketing for neural network analysis are being found. Contributes towards the development of the technique and suggests a number of further possible applications.
European Journal of Marketing – Emerald Publishing
Published: Oct 1, 1994
Keywords: Consumers; Financial services; Neural networks; Relationship marketing
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.