Access the full text.
Sign up today, get DeepDyve free for 14 days.
In today’s globalized and heavily industrialized economy, sustainability issues that negatively affect the human population and external environment are on the rise. This study aims to investigate a synergistic combination of supply chain management and quality management practices in strengthening the sustainability performance of Malaysian manufacturing firms.Design/methodology/approachA total sample of 177 usable surveys was collected. Given the contributions and acceptability of the artificial neural network (ANN) approach in evaluating the findings of this study, this study uses ANN to measure the relationship between each predictor (i.e. supply chain integration [SCI], quality leadership [QL], supplier focus [SF], customer focus (CF) and information sharing [IS]) and the dependent variable (i.e. sustainability performance). Via sensitivity analysis, the relative significance of each predictor variable is ranked based on the normalized importance value.FindingsThe sensitivity analysis indicates that CF has the greatest effect on sustainability performance (SP) with 100% normalized relative importance, followed by QL (75%), IS (61.5%), SF (57.3%) and SCI (46.7%).Originality/valueThe findings of this study have the potential to provide valuable guidance and insights that can help all manufacturing firms enhance their SP from the optimum combination of the selected SCQM practices with a focus on sustainability.
Supply Chain Management: An International Journal – Emerald Publishing
Published: Jul 5, 2022
Keywords: Sustainability; Manufacturing; Supply-chain management; Artificial Neural Network
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.