Unbonded Post Tensioned Concrete Slabs in Fire - Part II - Modelling Tendon Response and the Consequences of Localized Heating

Unbonded Post Tensioned Concrete Slabs in Fire - Part II - Modelling Tendon Response and the... This is Part II of a two part paper dealing with the current state of knowledge of the fire-safe structural design and construction of unbonded post-tensioned (UPT) flat plate concrete structures. Part I provided detailed results of nineteen transient high temperature stress relaxation tests on restrained UPT tendons of realistic length and parabolic longitudinal profiles. Experimentation identified several credible concerns for UPT concrete structures in fire, most notably the potential for premature tendon rupture due to localized heating, which may result from a number of possible causes in a real structure. The real world response of continuous UPT tendons both during and after heating is largely unknown, and is dependent on factors which are not currently accounted for either in standard fire tests or by available prescriptive design guidance. This second part of the paper presents and applies a numerical model to predict the time-temperaturestress-strength interdependencies of stressed UPT tendons under localized transient heating, as may be experienced by tendons in a real concrete building in a real fire. The model is used, along with previously developed and validated computational models for heat transfer and prestress relaxation in UPT tendons, to assess existing prescriptive concrete cover requirements for UPT slabs. It is shown that localized heating of UPT tendons is likely to induce premature tendon rupture during fire, and that current prescriptive code procedures based on concrete cover alone are, in general, insufficient to prevent this. Based on the data presented it appears that minimum code prescribed concrete covers for UPT structures require revision if premature tendon rupture during fire is to be avoided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Fire Engineering Emerald Publishing

Unbonded Post Tensioned Concrete Slabs in Fire - Part II - Modelling Tendon Response and the Consequences of Localized Heating

Loading next page...
 
/lp/emerald-publishing/unbonded-post-tensioned-concrete-slabs-in-fire-part-ii-modelling-5o3WX40fhK
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2040-2317
DOI
10.1260/2040-2317.2.3.155
Publisher site
See Article on Publisher Site

Abstract

This is Part II of a two part paper dealing with the current state of knowledge of the fire-safe structural design and construction of unbonded post-tensioned (UPT) flat plate concrete structures. Part I provided detailed results of nineteen transient high temperature stress relaxation tests on restrained UPT tendons of realistic length and parabolic longitudinal profiles. Experimentation identified several credible concerns for UPT concrete structures in fire, most notably the potential for premature tendon rupture due to localized heating, which may result from a number of possible causes in a real structure. The real world response of continuous UPT tendons both during and after heating is largely unknown, and is dependent on factors which are not currently accounted for either in standard fire tests or by available prescriptive design guidance. This second part of the paper presents and applies a numerical model to predict the time-temperaturestress-strength interdependencies of stressed UPT tendons under localized transient heating, as may be experienced by tendons in a real concrete building in a real fire. The model is used, along with previously developed and validated computational models for heat transfer and prestress relaxation in UPT tendons, to assess existing prescriptive concrete cover requirements for UPT slabs. It is shown that localized heating of UPT tendons is likely to induce premature tendon rupture during fire, and that current prescriptive code procedures based on concrete cover alone are, in general, insufficient to prevent this. Based on the data presented it appears that minimum code prescribed concrete covers for UPT structures require revision if premature tendon rupture during fire is to be avoided.

Journal

Journal of Structural Fire EngineeringEmerald Publishing

Published: Sep 1, 2011

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off