Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ultrasound assisted pre‐treatment and dyeing of linen fibres with reactive dyes

Ultrasound assisted pre‐treatment and dyeing of linen fibres with reactive dyes Purpose – To explore the use of power ultrasound as an environmentally friendly heating technology for the pre‐treatment of linen fibres with sodium perborate as the halogen free oxidising agent and to study the impact of this process on its dyeability with reactive dyes. Design/methodology/approach – Exploiting power ultrasound in the wet processes of linen fibres was made in two steps, i.e. ultrasonic pre‐treatment with sodium perborate followed by ultrasonic dyeing with reactive dyes. Therefore, comparative studies between conventional and ultrasonic techniques as well as the different factors that may affect these processes were investigated. The effect of the pre‐treatment on fibre fine structure using X‐ray diffraction technique was also investigated. Findings – The results of the increase of whiteness index indicate that ultrasonic pre‐treatment was better at all studied treatment times and at low temperature. X‐ray diffraction studies on blank, ultrasonically and conventionally pre‐treated linen fibres have shown 70.41, 67.51 and 64.90 per cent crystallinity, respectively. The dyeing of the pre‐treated fibres with Reactive Red 24 was simultaneously carried out under both ultrasonic and conventional heating conditions to study the effect of dye concentrations at different dyeing temperatures. The colour strength values obtained for the dyed samples using ultrasonic at 50°C were slightly higher than those obtained using conventional heating at 80°C. Ultrasonic enhancement in the pre‐treatment and dyeing in terms of the percent increase of colour strength of the dyed fabric was estimated to be 157.94 per cent higher than that of conventional heating method. The results of wet fastness properties of the dyed fibres using ultrasonic revealed improvement relative to those obtained using conventional heating method. Research limitations/implications – The improved wet processes of linen fibres suggest further investigation to exploit power ultrasound in the wet processes of cellulosic fibres at low temperature using different classes of halogen free bleaching agents and dyeing with different classes of heat‐requiring reactive dyes. Also, this work may inspire the synthesis of new generation of heat‐requiring reactive dyes. Practical implications – The work presented has significant potential industrial application for cleaner production in textile industries. Originality/value – The present study of linen pre‐treatment with non‐toxic total chlorine free oxidising agent and its dyeability with reactive dyes using power ultrasound is novel and could be used in the wet processes of linen fibres. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pigment & Resin Technology Emerald Publishing

Ultrasound assisted pre‐treatment and dyeing of linen fibres with reactive dyes

Loading next page...
 
/lp/emerald-publishing/ultrasound-assisted-pre-treatment-and-dyeing-of-linen-fibres-with-rHcMXwbYqy
Publisher
Emerald Publishing
Copyright
Copyright © 2007 Emerald Group Publishing Limited. All rights reserved.
ISSN
0369-9420
DOI
10.1108/03699420710831782
Publisher site
See Article on Publisher Site

Abstract

Purpose – To explore the use of power ultrasound as an environmentally friendly heating technology for the pre‐treatment of linen fibres with sodium perborate as the halogen free oxidising agent and to study the impact of this process on its dyeability with reactive dyes. Design/methodology/approach – Exploiting power ultrasound in the wet processes of linen fibres was made in two steps, i.e. ultrasonic pre‐treatment with sodium perborate followed by ultrasonic dyeing with reactive dyes. Therefore, comparative studies between conventional and ultrasonic techniques as well as the different factors that may affect these processes were investigated. The effect of the pre‐treatment on fibre fine structure using X‐ray diffraction technique was also investigated. Findings – The results of the increase of whiteness index indicate that ultrasonic pre‐treatment was better at all studied treatment times and at low temperature. X‐ray diffraction studies on blank, ultrasonically and conventionally pre‐treated linen fibres have shown 70.41, 67.51 and 64.90 per cent crystallinity, respectively. The dyeing of the pre‐treated fibres with Reactive Red 24 was simultaneously carried out under both ultrasonic and conventional heating conditions to study the effect of dye concentrations at different dyeing temperatures. The colour strength values obtained for the dyed samples using ultrasonic at 50°C were slightly higher than those obtained using conventional heating at 80°C. Ultrasonic enhancement in the pre‐treatment and dyeing in terms of the percent increase of colour strength of the dyed fabric was estimated to be 157.94 per cent higher than that of conventional heating method. The results of wet fastness properties of the dyed fibres using ultrasonic revealed improvement relative to those obtained using conventional heating method. Research limitations/implications – The improved wet processes of linen fibres suggest further investigation to exploit power ultrasound in the wet processes of cellulosic fibres at low temperature using different classes of halogen free bleaching agents and dyeing with different classes of heat‐requiring reactive dyes. Also, this work may inspire the synthesis of new generation of heat‐requiring reactive dyes. Practical implications – The work presented has significant potential industrial application for cleaner production in textile industries. Originality/value – The present study of linen pre‐treatment with non‐toxic total chlorine free oxidising agent and its dyeability with reactive dyes using power ultrasound is novel and could be used in the wet processes of linen fibres.

Journal

Pigment & Resin TechnologyEmerald Publishing

Published: Nov 13, 2007

Keywords: Low temperatures; Dyes; Textile fibres

References