Access the full text.
Sign up today, get DeepDyve free for 14 days.
IT is readily understood that no instrument or measuring device can be entirely free from errors duo to physical imperfections of manufacture. Gyroscopes in particular are affected in this way, requiring, as they do, complete absence of bearing friction if use is to be made of their property of preserving fixity in space of the direction of their spin axis when free from external forces. The impossibility of achieving this ideal condition results in a small degree of drift of the gyroaxis, and detracts from the value of a gyroscope as a direction indicating device. In spite of this deficiency, in cases where steadiness of pointer reading is of prime importance, standard gyroscopic directional instruments serve a very useful purpose, provided the necessity of applying corrections at appropriate time intervals is recognized and observed. Latterly, development along the lines of automatic compensation has overcome this defect, and has led to the advent of the monitored gyroscopic compass.
Aircraft Engineering and Aerospace Technology – Emerald Publishing
Published: Jan 1, 1948
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.