Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study is to present a novel approach for the evaluation of tribological properties of brake friction materials (BFM).Design/methodology/approachIn this study, a BFM was newly formulated with 16 different ingredients and produced using an industrial hot compression molding process. Experimentation was carried out on the brake tester, which was developed for this purpose according to SAE J661 standards. The braking applications, sliding speed and braking pressure were considered as performance parameters, whereas coefficient of friction (CoF) and wear rate as output parameters. The influence of the performance parameters on the output was studied using response surface plots. Analysis of variance and regression analysis was accomplished for post-experimental evaluation of results. Multi-criteria decision-making (MCDM) and multi-objective genetic algorithm (MOGA) were applied for estimating the most critical performance parameter combination to evaluate the BFM.FindingsThe present experimental model was significant and effectively used to predict the performance. MCDM generates the optimal values for the parameters braking applications, braking pressure (Bar) and sliding speed (rpm) as 1000, 30 and 915, whereas MOGA as 1008, 10.503 and 462.8202, respectively.Originality/valueAn efficient model for performance evaluation of the BFM considering maximum CoF and minimum wear rate was experimentally presented and statistically verified. Also, the two multi-objective optimization methodologies were implemented and compared. A comparison between the results of MCDM and MOGA reveals that MOGA yields 30% better results than MCDM.
Industrial Lubrication and Tribology – Emerald Publishing
Published: Jun 2, 2021
Keywords: Optimization; Multi-objective genetic algorithm; Coefficient of friction; Multi-criteria decision-making; Brake friction materials; Wear rate
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.