Tribocorrosion behaviors of thermal spraying WC/Ni60 coated 316L stainless steel in artificial seawater

Tribocorrosion behaviors of thermal spraying WC/Ni60 coated 316L stainless steel in artificial... PurposeThis paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.Design/methodology/approachComposition and microstructure of WC/Ni60 coating was investigated, and tribological properties of 316 L and WC/Ni60 coating were studied under dry sliding, deionized water and artificial seawater.FindingsThe results showed that WC/Ni60 coating was lamellar structure, and the phase composition consisted of γ-Ni solid solution, carbides and borides. Furthermore, the hardness and corrosion resistance of 316 L in static seawater and wear resistance in dry sliding were improved by WC reinforced nickel-based coating. Furthermore, tribocorrosion results demonstrated that wear resistance of WC/Ni60 coating was also significantly better than 316 L, especially for higher load at artificial seawater. The reason can be attributed to the fact that the passive film of WC/Ni60 coating consisted of tungsten carbide, Ni(OH)2 and FeOOH for WC/Ni60 coating and only FeOOH for 316 L.Originality/valueAccording to this study, it can be concluded that WC phases acted as a role in resisting the wear damages. Meanwhile, Ni-based materials performed well in corrosion resistance. Thus, the combined-effect Ni-based alloys and WC phases in WC/Ni60 coating showed better tribocorrosion performance than 316 L. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Tribocorrosion behaviors of thermal spraying WC/Ni60 coated 316L stainless steel in artificial seawater

Loading next page...
 
/lp/emerald-publishing/tribocorrosion-behaviors-of-thermal-spraying-wc-ni60-coated-316l-weY5QJ3a8M
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0036-8792
DOI
10.1108/ILT-12-2017-0386
Publisher site
See Article on Publisher Site

Abstract

PurposeThis paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.Design/methodology/approachComposition and microstructure of WC/Ni60 coating was investigated, and tribological properties of 316 L and WC/Ni60 coating were studied under dry sliding, deionized water and artificial seawater.FindingsThe results showed that WC/Ni60 coating was lamellar structure, and the phase composition consisted of γ-Ni solid solution, carbides and borides. Furthermore, the hardness and corrosion resistance of 316 L in static seawater and wear resistance in dry sliding were improved by WC reinforced nickel-based coating. Furthermore, tribocorrosion results demonstrated that wear resistance of WC/Ni60 coating was also significantly better than 316 L, especially for higher load at artificial seawater. The reason can be attributed to the fact that the passive film of WC/Ni60 coating consisted of tungsten carbide, Ni(OH)2 and FeOOH for WC/Ni60 coating and only FeOOH for 316 L.Originality/valueAccording to this study, it can be concluded that WC phases acted as a role in resisting the wear damages. Meanwhile, Ni-based materials performed well in corrosion resistance. Thus, the combined-effect Ni-based alloys and WC phases in WC/Ni60 coating showed better tribocorrosion performance than 316 L.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Aug 12, 2019

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off