Towards an automatic user profiling system for online information sites

Towards an automatic user profiling system for online information sites Purpose – The purpose of this paper is to identify demographic differences based on how users interact with web applications. The research is needed to develop future systems able to adapt the representation of online information to the user’s specific needs and preferences improving its usability. The following question guides this quest: is there a direct relationship between age and/or gender and interaction? Design/methodology/approach – GOMS (goals, operators, methods, and selection rules) analysis was used to reduce complex interaction tasks into basic operators like pointing, dragging, typing, etc. An experiment was designed to analyse the user performance in the use of these operators through five complex tasks: point-and-click, drag-and-drop, text selection, text edition and menu selection. The sample comprises 592 individuals which took part in the experiment. The performance was analysed using multivariate regression analysis. User laterality and the the user experience were used as control variables. Findings – The factors studied are significant enough to support user classification. The analysis evidenced that men performed significantly better than women when executing interaction pointing and dragging GOMS’s operators, but no significant differences arose with regard to the performance in the typing operators. Older users performed worse in all the interaction tasks. No significant performance differences were detected between left and right-handed users. Research limitations/implications – The study pretends to lay the ground for developing artificial intelligence-based classification systems (e.g. neural networks, decision trees, etc.) able to detect significant differences in user performance, classifying users according to their age, gender and laterality. Practical implications – This user profiling would drive the organisation, selection and representation of the online information according to the specific preferences and needs of each user. This would allow the design of new personalisation algorithms able to perform dynamic adaptation of user interfaces in order to improve the usability of online information systems. Originality/value – This work extends previous research on user performance under a new approach and improved accuracy. First, it relies on the combined and simultaneous analysis of ageing and gender and the use of user laterality and experience as control variables. Second, the use of the GOMS analysis allowed the design of tests that closely resemble the user interaction in online information systems. Third, the size of the sample used in this analysis is much bigger than those used in previous works, allowing a more thorough data analysis which includes the estimation of an advanced model which is quantile regression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Online Information Review Emerald Publishing

Towards an automatic user profiling system for online information sites

Loading next page...
 
/lp/emerald-publishing/towards-an-automatic-user-profiling-system-for-online-information-mdw865gDkp
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1468-4527
DOI
10.1108/OIR-06-2014-0134
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to identify demographic differences based on how users interact with web applications. The research is needed to develop future systems able to adapt the representation of online information to the user’s specific needs and preferences improving its usability. The following question guides this quest: is there a direct relationship between age and/or gender and interaction? Design/methodology/approach – GOMS (goals, operators, methods, and selection rules) analysis was used to reduce complex interaction tasks into basic operators like pointing, dragging, typing, etc. An experiment was designed to analyse the user performance in the use of these operators through five complex tasks: point-and-click, drag-and-drop, text selection, text edition and menu selection. The sample comprises 592 individuals which took part in the experiment. The performance was analysed using multivariate regression analysis. User laterality and the the user experience were used as control variables. Findings – The factors studied are significant enough to support user classification. The analysis evidenced that men performed significantly better than women when executing interaction pointing and dragging GOMS’s operators, but no significant differences arose with regard to the performance in the typing operators. Older users performed worse in all the interaction tasks. No significant performance differences were detected between left and right-handed users. Research limitations/implications – The study pretends to lay the ground for developing artificial intelligence-based classification systems (e.g. neural networks, decision trees, etc.) able to detect significant differences in user performance, classifying users according to their age, gender and laterality. Practical implications – This user profiling would drive the organisation, selection and representation of the online information according to the specific preferences and needs of each user. This would allow the design of new personalisation algorithms able to perform dynamic adaptation of user interfaces in order to improve the usability of online information systems. Originality/value – This work extends previous research on user performance under a new approach and improved accuracy. First, it relies on the combined and simultaneous analysis of ageing and gender and the use of user laterality and experience as control variables. Second, the use of the GOMS analysis allowed the design of tests that closely resemble the user interaction in online information systems. Third, the size of the sample used in this analysis is much bigger than those used in previous works, allowing a more thorough data analysis which includes the estimation of an advanced model which is quantile regression.

Journal

Online Information ReviewEmerald Publishing

Published: Feb 9, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off