Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Thermohydrostatic rheological analysis of constant flow valve compensated multiple hole‐entry hybrid journal bearings

Thermohydrostatic rheological analysis of constant flow valve compensated multiple hole‐entry... Purpose – The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the lubricant fluid‐film and bearing surface. To predict the performance of a bearing realistically, theoretical model must consider the combined influence of the rise of temperature and non‐Newtonian behavior of the lubricant. The aim of the present paper is to study the effect of viscosity variation due to temperature rise and non‐Newtonian behavior of the lubricant on performance of constant flow valve compensated multiple hole‐entry hybrid journal bearings. Design/methodology/approach – Finite element method has been used to solve Reynolds equation along with restrictor flow equation, 3D energy equation and 3D conduction equation using suitable iterative technique. The non‐Newtonian lubricant has been assumed to follow cubic shear stress law. Findings – The thermohydrostatic rheological performances of symmetric and asymmetric hole‐entry hybrid journal bearing configurations are studied. The computed results illustrate that variation of viscosity due to rise in temperature and non‐Newtonian behavior of the lubricant affects the performance of hole‐entry hybrid journal bearing system quite significantly. Originality/value – In the present work, the influences of the viscosity variation due to temperature rise and non‐Newtonian behavior of the lubricant on the performance characteristics of non‐recessed hole‐entry hybrid journal bearing with symmetric and asymmetric configurations compensated with constant flow valve restrictors have been investigated for generating the design data to be used by bearing designer. The design data computed in the present thesis are a contribution in field of knowledge of bearing design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Lubrication and Tribology Emerald Publishing

Thermohydrostatic rheological analysis of constant flow valve compensated multiple hole‐entry hybrid journal bearings

Industrial Lubrication and Tribology , Volume 66 (2): 16 – Mar 4, 2014

Loading next page...
 
/lp/emerald-publishing/thermohydrostatic-rheological-analysis-of-constant-flow-valve-Ycd1C3vb8H
Publisher
Emerald Publishing
Copyright
Copyright © 2014 Emerald Group Publishing Limited. All rights reserved.
ISSN
0036-8792
DOI
10.1108/ILT-10-2012-0114
Publisher site
See Article on Publisher Site

Abstract

Purpose – The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the lubricant fluid‐film and bearing surface. To predict the performance of a bearing realistically, theoretical model must consider the combined influence of the rise of temperature and non‐Newtonian behavior of the lubricant. The aim of the present paper is to study the effect of viscosity variation due to temperature rise and non‐Newtonian behavior of the lubricant on performance of constant flow valve compensated multiple hole‐entry hybrid journal bearings. Design/methodology/approach – Finite element method has been used to solve Reynolds equation along with restrictor flow equation, 3D energy equation and 3D conduction equation using suitable iterative technique. The non‐Newtonian lubricant has been assumed to follow cubic shear stress law. Findings – The thermohydrostatic rheological performances of symmetric and asymmetric hole‐entry hybrid journal bearing configurations are studied. The computed results illustrate that variation of viscosity due to rise in temperature and non‐Newtonian behavior of the lubricant affects the performance of hole‐entry hybrid journal bearing system quite significantly. Originality/value – In the present work, the influences of the viscosity variation due to temperature rise and non‐Newtonian behavior of the lubricant on the performance characteristics of non‐recessed hole‐entry hybrid journal bearing with symmetric and asymmetric configurations compensated with constant flow valve restrictors have been investigated for generating the design data to be used by bearing designer. The design data computed in the present thesis are a contribution in field of knowledge of bearing design.

Journal

Industrial Lubrication and TribologyEmerald Publishing

Published: Mar 4, 2014

Keywords: Constant flow valve restrictor; Journal bearing; Hole‐entry; Non‐Newtonian lubricant; Hybrid; Thermal effects

References