Thermal Expansion and Laser Trim Stability of Ruthenium Based Thick Film Resistors on Alumina and on Multilayer Dielectric

Thermal Expansion and Laser Trim Stability of Ruthenium Based Thick Film Resistors on Alumina and... Fired resistors exhibit variations which are minimised by abrasive and laser trimming. The latter may cause unstable behaviour which is further aggravated by thermal shock. The chemical structure of a thick film resistor is analysed with respect to mechanical stress, and the theoretical conclusion that the coefficient of thermal expansion of the resistor should be equal to or smaller than that of the substrate is verified experimentally. The thermal behaviour of ruthenium dioxide is examined and a range of CTE values are determined for materials of varying chemical composition. The relationship between CTE and post laser trimming stability is demonstrated on four thick film resistors which differ in thermal expansion. It is pointed out that formulations with high metallic content can absorb tensile stress by elastic deformation, thus minimising the formation or propagation of laser induced cracks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microelectronics International Emerald Publishing

Thermal Expansion and Laser Trim Stability of Ruthenium Based Thick Film Resistors on Alumina and on Multilayer Dielectric

Microelectronics International, Volume 1 (1): 4 – Jan 1, 1982

Loading next page...
 
/lp/emerald-publishing/thermal-expansion-and-laser-trim-stability-of-ruthenium-based-thick-8mkV5G03wC
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1356-5362
DOI
10.1108/eb044112
Publisher site
See Article on Publisher Site

Abstract

Fired resistors exhibit variations which are minimised by abrasive and laser trimming. The latter may cause unstable behaviour which is further aggravated by thermal shock. The chemical structure of a thick film resistor is analysed with respect to mechanical stress, and the theoretical conclusion that the coefficient of thermal expansion of the resistor should be equal to or smaller than that of the substrate is verified experimentally. The thermal behaviour of ruthenium dioxide is examined and a range of CTE values are determined for materials of varying chemical composition. The relationship between CTE and post laser trimming stability is demonstrated on four thick film resistors which differ in thermal expansion. It is pointed out that formulations with high metallic content can absorb tensile stress by elastic deformation, thus minimising the formation or propagation of laser induced cracks.

Journal

Microelectronics InternationalEmerald Publishing

Published: Jan 1, 1982

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off