Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran

Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran This research aims to introduce a new methodology for integration between urban design strategies and supervised machine learning (SML) method – by applying both energy engineering modeling (evaluating phase) for the existing green sidewalks and statistical energy modeling (predicting phase) for the new ones – to offer algorithms that help to catch the optimum morphology of green sidewalks, in case of high quality of the outdoor thermal comfort and less errors in results.Design/methodology/approachThe tools of the study are the way of processing by SML, predicting the future based on the past. Machine learning is benefited from Python advantages. The structure of the study consisted of two main parts, as the majority of the similar studies follow: engineering energy modeling and statistical energy modeling. According to the concept of the study, at first, from 2268 models, some are randomly selected, simulated and sensitively analyzed by ENVI-met. Furthermore, the Envi-met output as the quantity of thermal comfort – predicted mean vote (PMV) and weather items are inputs of Python. Then, the formed data set is processed by SML, to reach the final reliable predicted output.FindingsThe process of SML leads the study to find thermal comfort of current models and other similar sidewalks. The results are evaluated by both PMV mathematical model and SML error evaluation functions. The results confirm that the average of the occurred error is about 1%. Then the method of study is reliable to apply in the variety of similar fields. Finding of this study can be helpful in perspective of the sustainable architecture strategies in the buildings and urban scales, to determine, monitor and control energy-based behaviors (thermal comfort, heating, cooling, lighting and ventilation) in operational phase of the systems (existed elements in buildings, and constructions) and the planning and designing phase of the future built cases – all over their life spans.Research limitations/implicationsLimitations of the study are related to the study variables and alternatives that are notable impact on the findings. Furthermore, the most trustable input data will result in the more accuracy in output. Then modeling and simulation processes are most significant part of the research to reach the exact results in the final step.Practical implicationsFinding of the study can be helpful in urban design strategies. By finding outdoor thermal comfort that resulted from machine learning method, urban and landscape designers, policymakers and architects are able to estimate the features of their designs in air quality and urban health and can be sure in catching design goals in case of thermal comfort in urban atmosphere.Social implicationsBy 2030, cities are delved as living spaces for about three out of five people. As green infrastructures influence in moderating the cities’ climate, the relationship between green spaces and habitants’ thermal comfort is deduced. Although the strategies to outside thermal comfort improvement, by design methods and applicants, are not new subject to discuss, applying machines that may be common in predicting results can be called as a new insight in applying more effective design strategies and in urban environment’s comfort preparation. Then study’s footprint in social implications stems in learning from the previous projects and developing more efficient strategies to prepare cities as the more comfortable and healthy places to live, with the more efficient models and consuming money and time.Originality/valueThe study achievements are expected to be applied not only in Tehran but also in other climate zones as the pattern in more eco-city design strategies. Although some similar studies are done in different majors, the concept of study is new vision in urban studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Smart and Sustainable Built Environment Market Emerald Publishing

Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran

Loading next page...
 
/lp/emerald-publishing/thermal-comfort-prediction-by-applying-supervised-machine-learning-in-LcYA0b0kLN

References (24)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2046-6099
DOI
10.1108/sasbe-03-2019-0028
Publisher site
See Article on Publisher Site

Abstract

This research aims to introduce a new methodology for integration between urban design strategies and supervised machine learning (SML) method – by applying both energy engineering modeling (evaluating phase) for the existing green sidewalks and statistical energy modeling (predicting phase) for the new ones – to offer algorithms that help to catch the optimum morphology of green sidewalks, in case of high quality of the outdoor thermal comfort and less errors in results.Design/methodology/approachThe tools of the study are the way of processing by SML, predicting the future based on the past. Machine learning is benefited from Python advantages. The structure of the study consisted of two main parts, as the majority of the similar studies follow: engineering energy modeling and statistical energy modeling. According to the concept of the study, at first, from 2268 models, some are randomly selected, simulated and sensitively analyzed by ENVI-met. Furthermore, the Envi-met output as the quantity of thermal comfort – predicted mean vote (PMV) and weather items are inputs of Python. Then, the formed data set is processed by SML, to reach the final reliable predicted output.FindingsThe process of SML leads the study to find thermal comfort of current models and other similar sidewalks. The results are evaluated by both PMV mathematical model and SML error evaluation functions. The results confirm that the average of the occurred error is about 1%. Then the method of study is reliable to apply in the variety of similar fields. Finding of this study can be helpful in perspective of the sustainable architecture strategies in the buildings and urban scales, to determine, monitor and control energy-based behaviors (thermal comfort, heating, cooling, lighting and ventilation) in operational phase of the systems (existed elements in buildings, and constructions) and the planning and designing phase of the future built cases – all over their life spans.Research limitations/implicationsLimitations of the study are related to the study variables and alternatives that are notable impact on the findings. Furthermore, the most trustable input data will result in the more accuracy in output. Then modeling and simulation processes are most significant part of the research to reach the exact results in the final step.Practical implicationsFinding of the study can be helpful in urban design strategies. By finding outdoor thermal comfort that resulted from machine learning method, urban and landscape designers, policymakers and architects are able to estimate the features of their designs in air quality and urban health and can be sure in catching design goals in case of thermal comfort in urban atmosphere.Social implicationsBy 2030, cities are delved as living spaces for about three out of five people. As green infrastructures influence in moderating the cities’ climate, the relationship between green spaces and habitants’ thermal comfort is deduced. Although the strategies to outside thermal comfort improvement, by design methods and applicants, are not new subject to discuss, applying machines that may be common in predicting results can be called as a new insight in applying more effective design strategies and in urban environment’s comfort preparation. Then study’s footprint in social implications stems in learning from the previous projects and developing more efficient strategies to prepare cities as the more comfortable and healthy places to live, with the more efficient models and consuming money and time.Originality/valueThe study achievements are expected to be applied not only in Tehran but also in other climate zones as the pattern in more eco-city design strategies. Although some similar studies are done in different majors, the concept of study is new vision in urban studies.

Journal

Smart and Sustainable Built Environment MarketEmerald Publishing

Published: Dec 11, 2020

Keywords: Urban thermal comfort; Green Sidewalks; Hyper parameters learning algorithm; Supervised machine learning

There are no references for this article.