Access the full text.
Sign up today, get DeepDyve free for 14 days.
An algorithm for the visualization of the electric force lines is discussed. Based on the nodal potentials calculated by the conventional finite element method, the boundary conditions of the electric flux are determined by the integral of the electric displacement along all conductors. The finite element equations of the electric flux for two‐dimensional fields are derived. Especially for the axial symmetrical field, a new interpolation function is defined in order to avoid the infinity of the vector electric potential at the symmetrical axis. The nodal electric fluxes are calculated and the smooth electric force lines are visualized. Some examples show that this algorithm is very effective.
Engineering Computations – Emerald Publishing
Published: Mar 1, 2000
Keywords: Electrical fields; Finite element method; Numerical analysis; Force; Algorithms
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.