Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – To investigate the inhibitive effect of Congo red dye (CR) for aluminium corrosion in strong alkaline solutions and evaluate the synergistic effect of halide ions on the inhibition efficiency. Design/methodology/approach – Corrosion rates of aluminium test coupons were determined by gravimetric technique at 30 and 60°C. Inhibition efficiencies of the additives (0.01‐5.0 mM CR and 5.0 mM CR+0.5 mM halides) were evaluated by comparing corrosion rates of the test coupons in 2 M KOH solution in the absence and presence of the additives. Findings – CR inhibited aluminium corrosion in 2 M KOH by physical adsorption of the dye molecules on the corroding metal surface. Maximum efficiency at 30 and 60°C was 31.72 and 19.32 per cent, respectively. Dye adsorption was enhanced in the presence of halides in the order KCl < KBr < KI, with KI increasing efficiency up to 48.63 and 41.70 per cent at 30 and 60°C, respectively. Research limitations/implications – Further studies to involve variation of dye and halide concentrations for CR+halide systems to determine the best combination for optimum inhibition synergism. Originality/value – This paper forms part of an extensive database on the inhibition characteristics of organic dyes for corrosion of different metals in various aggressive environments. This is to serve as a guide to possible applications in metal‐surface anodizing and as additives in surface coatings for service in different environments.
Anti-Corrosion Methods and Materials – Emerald Publishing
Published: Oct 1, 2005
Keywords: Metals; Corrosion inhibitors; Adhesion; Dyes
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.