The autonomous detection and guiding of start welding position for arc welding robot

The autonomous detection and guiding of start welding position for arc welding robot Purpose – The recognition and positioning of start welding position (SWP) is the first step and one of the key technologies to realize autonomous robot welding. The purpose of this paper is to describe a method developed to accomplish successful autonomous detection and guiding of SWP. Design/methodology/approach – The images of workpieces are snapped by charge coupled device (CCD) cameras in a relative large range without additional light. The recognized methods of SWP are analyzed according to the given definition. A two‐step method named “coarse‐to‐fine” is proposed to recognize the SWP accurately. The first step is to solve the curve functions of seam and workpieces boundaries by fitting. The intersection point is regarded as initial value of SWP. The second step is to establish a small window that takes the initial value of SWP as centre. Then, the SWP is obtained exactly by corner detection in the window. Both the abundant information of original image and the structured information of recognized image are used according to given rules, which takes full advantage of the image information and improves the recognized precision. Findings – The detected results show that the actual and calculated positions by first step of SWP are identical for regular seam, but different for the irregular curve seam. The exact results can be calculated by the two‐step method in the paper for both regular and irregular seams. The typical planar “S‐shape” and spatial arc curved seams are selected to carry out autonomous guiding of SWP. Originality/value – The experimental results are given based on the introduction of 3D reconstructed and guided method. The guided precision is less than 1.1 mm, which meets the requirements of practical production. The proposed two‐step method recognizes the SWP rapidly and exactly from coarse to fine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Industrial Robot: An International Journal Emerald Publishing

The autonomous detection and guiding of start welding position for arc welding robot

Industrial Robot: An International Journal, Volume 37 (1): 9 – Jan 12, 2010

Loading next page...
 
/lp/emerald-publishing/the-autonomous-detection-and-guiding-of-start-welding-position-for-arc-qMQVRL8GPP
Publisher
Emerald Publishing
Copyright
Copyright © 2010 Emerald Group Publishing Limited. All rights reserved.
ISSN
0143-991X
DOI
10.1108/01439911011009975
Publisher site
See Article on Publisher Site

Abstract

Purpose – The recognition and positioning of start welding position (SWP) is the first step and one of the key technologies to realize autonomous robot welding. The purpose of this paper is to describe a method developed to accomplish successful autonomous detection and guiding of SWP. Design/methodology/approach – The images of workpieces are snapped by charge coupled device (CCD) cameras in a relative large range without additional light. The recognized methods of SWP are analyzed according to the given definition. A two‐step method named “coarse‐to‐fine” is proposed to recognize the SWP accurately. The first step is to solve the curve functions of seam and workpieces boundaries by fitting. The intersection point is regarded as initial value of SWP. The second step is to establish a small window that takes the initial value of SWP as centre. Then, the SWP is obtained exactly by corner detection in the window. Both the abundant information of original image and the structured information of recognized image are used according to given rules, which takes full advantage of the image information and improves the recognized precision. Findings – The detected results show that the actual and calculated positions by first step of SWP are identical for regular seam, but different for the irregular curve seam. The exact results can be calculated by the two‐step method in the paper for both regular and irregular seams. The typical planar “S‐shape” and spatial arc curved seams are selected to carry out autonomous guiding of SWP. Originality/value – The experimental results are given based on the introduction of 3D reconstructed and guided method. The guided precision is less than 1.1 mm, which meets the requirements of practical production. The proposed two‐step method recognizes the SWP rapidly and exactly from coarse to fine.

Journal

Industrial Robot: An International JournalEmerald Publishing

Published: Jan 12, 2010

Keywords: Arc welding; Robotics; Production processes

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off