The analysis of the energy consumption of Chinese manufacturing based on the combination forecasting model

The analysis of the energy consumption of Chinese manufacturing based on the combination... Purpose – The purpose of this paper is to find a method that has high precision to forecast the energy consumption of China’s manufacturing industry. The authors hope the predicted data can provide references to the formulation of government’s energy strategy and the sustained growth of economy in China. Design/methodology/approach – First, the authors respectively make use of regression prediction model and grey system theory GM(1,1) model to construct single model based the data of 2001-2010, analyze the advantages and disadvantages of single prediction models. The authors use the data of 2011 and 2012 to test the model. Second, the authors propose combination forecasting model of manufacturing’s energy consumption in China by using standard variance to allocate the weight. Finally, this model is applied to forecast China’s manufacturing energy consumption during 2013-2016. Findings – The result shows that the combination model is a better one with higher accuracy; the authors can take the model as an effective tool to predict manufacturing’s energy consumption in China. And the energy consumption of China’s manufacturing industry continued to show a steady incremental trend. Originality/value – This method takes full advantages of the effective information reflected by the single model and improves the prediction accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Grey Systems: Theory and Application Emerald Publishing

The analysis of the energy consumption of Chinese manufacturing based on the combination forecasting model

Loading next page...
 
/lp/emerald-publishing/the-analysis-of-the-energy-consumption-of-chinese-manufacturing-based-oF9cx4dTZP
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
2043-9377
DOI
10.1108/GS-11-2014-0044
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to find a method that has high precision to forecast the energy consumption of China’s manufacturing industry. The authors hope the predicted data can provide references to the formulation of government’s energy strategy and the sustained growth of economy in China. Design/methodology/approach – First, the authors respectively make use of regression prediction model and grey system theory GM(1,1) model to construct single model based the data of 2001-2010, analyze the advantages and disadvantages of single prediction models. The authors use the data of 2011 and 2012 to test the model. Second, the authors propose combination forecasting model of manufacturing’s energy consumption in China by using standard variance to allocate the weight. Finally, this model is applied to forecast China’s manufacturing energy consumption during 2013-2016. Findings – The result shows that the combination model is a better one with higher accuracy; the authors can take the model as an effective tool to predict manufacturing’s energy consumption in China. And the energy consumption of China’s manufacturing industry continued to show a steady incremental trend. Originality/value – This method takes full advantages of the effective information reflected by the single model and improves the prediction accuracy.

Journal

Grey Systems: Theory and ApplicationEmerald Publishing

Published: Feb 2, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off