“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Text clustering and summary techniques for CRM message management

One of customer relationship management (CRM) activities involves soliciting customer feedback on product and service quality and the resolution of customer complaints. Inevitably, companies must deal with large number of CRM messages from their customers either through e‐mails or from work logs. Going through those messages is an important but tedious task for managers or CRM specialists in order to make strategic plans on where to place the resources to achieve better CRM results. In this paper, we present a methodology for making sense out of CRM messages based on text clustering and summary techniques. The unique features of CRM messages are the short message length and frequent availability of correlated CRM ratings. We propose several novel techniques including organizational concept space, Web mining of similarity relationships between concepts, and correlated analysis of text and ratings. We have tested the basic concepts and techniques of CRM Sense Maker in a business setting where customer surveys are used to set strategic directions in customer services. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Enterprise Information Management Emerald Publishing
Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.