Access the full text.
Sign up today, get DeepDyve free for 14 days.
A methodology for producing an elevated-temperature tension stiffening model is presented.Design/methodology/approachThe energy-based stress–strain model of plain concrete developed by Bažant and Oh (1983) was extended to the elevated-temperature domain by developing an analytical formulation for the temperature-dependence of the fracture energy Gf. Then, an elevated-temperature tension stiffening model was developed based on the modification of the proposed elevated-temperature tension softening model.FindingsThe proposed tension stiffening model can be used to predict the response of composite floor slabs exposed to fire with great accuracy, provided that the global parameters TS and Kres are adequately calibrated against global structural response data.Originality/valueIn a finite element analysis of reinforced concrete, a tension stiffening model is required as input for concrete to account for actions such as bond slip and tension stiffening. However, an elevated-temperature tension stiffening model does not exist in the research literature. An approach for developing an elevated-temperature tension stiffening model is presented.
Journal of Structural Fire Engineering – Emerald Publishing
Published: Feb 15, 2023
Keywords: Tension stiffening; Tension softening; Fracture energy; Average stress–strain relationship; Steel-concrete composite floor slabs; Finite element analysis
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.