Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Temperature-dependent hysteresis model for soft magnetic materials

Temperature-dependent hysteresis model for soft magnetic materials To understand the behavior of the magnetization processes in ferromagnetic materials in function of temperature, a temperature-dependent hysteresis model is necessary. This study aims to investigate how temperature can be accounted for in the energy-based hysteresis model, via an appropriate parameter identification and interpolation procedure.Design/methodology/approachThe hysteresis model used for simulating the material response is energy-consistent and relies on thermodynamic principles. The material parameters have been identified by unidirectional alternating measurements, and the model has been tested for both simple and complex excitation waveforms. Measurements and simulations have been performed on a soft ferrite toroidal sample characterized in a wide temperature range.FindingsThe analysis shows that the model is able to represent accurately arbitrary excitation waveforms in function of temperature. The identification method used to determine the model parameters has proven its robustness: starting from simple excitation waveforms, the complex ones can be simulated precisely.Research limitations/implicationsAs parameters vary depending on temperature, a new parameter variation law in function of temperature has been proposed.Practical implicationsA complete static hysteresis model able to take the temperature into account is now available. The identification is quite simple and requires very few measurements at different temperatures.Originality/valueThe results suggest that it is possible to predict magnetization curves within the measured range, starting from a reduced set of measured data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/temperature-dependent-hysteresis-model-for-soft-magnetic-materials-MLH70ptfcn
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0332-1649
DOI
10.1108/compel-12-2018-0535
Publisher site
See Article on Publisher Site

Abstract

To understand the behavior of the magnetization processes in ferromagnetic materials in function of temperature, a temperature-dependent hysteresis model is necessary. This study aims to investigate how temperature can be accounted for in the energy-based hysteresis model, via an appropriate parameter identification and interpolation procedure.Design/methodology/approachThe hysteresis model used for simulating the material response is energy-consistent and relies on thermodynamic principles. The material parameters have been identified by unidirectional alternating measurements, and the model has been tested for both simple and complex excitation waveforms. Measurements and simulations have been performed on a soft ferrite toroidal sample characterized in a wide temperature range.FindingsThe analysis shows that the model is able to represent accurately arbitrary excitation waveforms in function of temperature. The identification method used to determine the model parameters has proven its robustness: starting from simple excitation waveforms, the complex ones can be simulated precisely.Research limitations/implicationsAs parameters vary depending on temperature, a new parameter variation law in function of temperature has been proposed.Practical implicationsA complete static hysteresis model able to take the temperature into account is now available. The identification is quite simple and requires very few measurements at different temperatures.Originality/valueThe results suggest that it is possible to predict magnetization curves within the measured range, starting from a reduced set of measured data.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Oct 21, 2019

Keywords: Magnetic hysteresis; Thermal analysis; Soft magnetic materials; Material modeling

References