Systemic data management for mathematical modelling of environmental problems

Systemic data management for mathematical modelling of environmental problems With the diversification of modelling activities encouraged by versatile modelling tools, handling their datasets has become a formidable problem. A further impetus stems from the emergence of the real‐time forecasting culture, transforming data embedded in computer programs of one‐off modelling activities of the 1970s‐1980s into dataset assets, an important feature of modelling since the 1990s, where modelling has emerged as a practice with a pivotal role to data transactions. The scope for data is now vast but in legacy data management practices datasets are fragmented, not transparent outside their native software systems, and normally “monolithic”. Emerging initiatives on published interfaces will make datasets transparent outside their native systems but will not solve the fragmentation and monolithic problems. These problems signify a lack of science base in data management and as such it is necessary to unravel inherent generic structures in data. This paper outlines root causes for these problems and presents a tentative solution referred to as “systemic data management”, which is capable of solving the above problems through the assemblage of packaged data. Categorisation is presented as a packaging methodology and the various sources contributing to the generic structure of data are outlined, e.g. modelling techniques, modelling problems, application areas and application problems. The opportunities offered by systemic data management include: promoting transparency among datasets of different software systems; exploiting inherent synergies within data; and treating data as assets with a long‐term view on reuse of these assets in an integrated capability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Management of Environmental Quality: An International Journal Emerald Publishing

Systemic data management for mathematical modelling of environmental problems

Loading next page...
 
/lp/emerald-publishing/systemic-data-management-for-mathematical-modelling-of-environmental-c7hMH6prCp
Publisher
Emerald Publishing
Copyright
Copyright © 2004 Emerald Group Publishing Limited. All rights reserved.
ISSN
1477-7835
DOI
10.1108/14777830410531289
Publisher site
See Article on Publisher Site

Abstract

With the diversification of modelling activities encouraged by versatile modelling tools, handling their datasets has become a formidable problem. A further impetus stems from the emergence of the real‐time forecasting culture, transforming data embedded in computer programs of one‐off modelling activities of the 1970s‐1980s into dataset assets, an important feature of modelling since the 1990s, where modelling has emerged as a practice with a pivotal role to data transactions. The scope for data is now vast but in legacy data management practices datasets are fragmented, not transparent outside their native software systems, and normally “monolithic”. Emerging initiatives on published interfaces will make datasets transparent outside their native systems but will not solve the fragmentation and monolithic problems. These problems signify a lack of science base in data management and as such it is necessary to unravel inherent generic structures in data. This paper outlines root causes for these problems and presents a tentative solution referred to as “systemic data management”, which is capable of solving the above problems through the assemblage of packaged data. Categorisation is presented as a packaging methodology and the various sources contributing to the generic structure of data are outlined, e.g. modelling techniques, modelling problems, application areas and application problems. The opportunities offered by systemic data management include: promoting transparency among datasets of different software systems; exploiting inherent synergies within data; and treating data as assets with a long‐term view on reuse of these assets in an integrated capability.

Journal

Management of Environmental Quality: An International JournalEmerald Publishing

Published: Jun 1, 2004

Keywords: Mathematical modelling; Data handling; Data structures; Systems software

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off