Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The paper aims to study the variation of electrical properties like electrical resistivity and current noise of a polymer thick film resistor, namely, PVC‐graphite thick film resistor, with parameters such as volume fraction, grain size, temperature and high voltage. Design/methodology/approach – A model is proposed to explain the observed variations, which assumes that the texture of the polymer thick film resistor consists of insulator granules coated with conducting particles and also having cavities. The resistivity of these resistors is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle with its neighbors. Findings – The variation of resistivity with temperature and high voltage is explained with the help of the model and it is attributed to the change in contact area and number of contacts. The current noise of these resistors is controlled mainly by the average relative resistance fluctuations between the conducting particles and the number of contacts each particle with its neighbors. Originality/value – The variation of current noise with high voltage has also been explained with the help of this model and it is attributed to the change in number of conducting particles and conducting layers.
Microelectronics International – Emerald Publishing
Published: Jan 2, 2007
Keywords: Films (states of matter); Temperature; Electrical resistivity
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.