Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this study was to deposit Bi4Ti3O12 films by electron gun evaporation technique starting from Bi3.25La0.75Ti3O12 as a target without annealing. The films have been deposited on Si(100), on thin film buffer layer of Pt and glass substrates. X-ray diffraction (XRD) was used to analyze structure of the films, which possesses a good structure with (0010) preferred orientation. Electronic behavior of the samples has been studied.Design/methodology/approachThe dependence of both the structure and quality of the BLT thin films on different substrates is studied using XRD. The electrical characteristics were determined using capacitance–voltage (C–V) and current–voltage (I–V) measurements at the frequency of 1 MHz. Optical properties of the grown films deposited on glass substrates were characterized by optical transmittance measurements (UV-Vis).FindingsThe XRD analysis approved the crystallographer structure of the prepared Bi4Ti3O12 films. The optical properties of deposited film (transmittance and the band gap value) are extracted by UV-Vis spectrum.Originality/valueHigh crystalline quality Bi4Ti3O12 films have been obtained using different substrates at room temperature by means of electron gun deposition. The electrical and ferroelectric properties of thin films were studied using I–V and C–V measurements. The band gap has been found to be about 3.62 eV for the studied film deposited on glass substrate. Electron beam evaporation technique is the most interesting methods, once considering many advantages; such as its stability, reproducibility, high deposition rate and the compositions of the films are controlled.
World Journal of Engineering – Emerald Publishing
Published: Dec 5, 2022
Keywords: BLT films; E-beam deposition; Structure; Optical properties; Electrical characteristics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.