Access the full text.
Sign up today, get DeepDyve free for 14 days.
J.D. Lavers, M.R. Ahmed
A BEM to predict the shape of a molten metal free surface in an EM confinement field
S. Galunin, M. Zlobina, Yu. Blinov, B. Nacke
Numerical optimization in design of induction heating systems
Jin-Kyu Byun, Kyung Choi, Hee-Suce Roh, S. Hahn (2000)
Optimal design procedure for a practical induction heating cookerIEEE Transactions on Magnetics, 36
V. Bukanin, F. Dughiero, S. Lupi, V. Nemkov, P. Siega (1995)
3D-FEM simulation of transverse-flux induction heaters, 31
R. Pascal, P. Conraux, J. Bergheau (2003)
Coupling between finite elements and boundary elements for the numerical simulation of induction heating processes using a harmonic balance methodIEEE Transactions on Magnetics, 39
In-Gu Kwak, S. Hahn (2000)
Design sensitivity of transient electro-thermal problems for the specific temperature distributionIEEE Transactions on Magnetics, 36
D. Albertz, G. Henneberger (1998)
Calculation of 3D eddy current fields using both electric and magnetic vector potential in conducting regionsIEEE Transactions on Magnetics, 34
J.W. Evans, D.P. Cook, S. Nishioka
Mathematical and physical modeling of electromagnetically supported melts in three dimensions
J.D. Lavers, P.P. Biringer
The influence of system geometry on the electromagnetic stirring forces in crucible induction melting furnaces
P. Sergeant, L. Dupré, J. Melkebeek (2003)
Optimizing active and passive magnetic shields of induction heaters by a genetic algorithm
M. Ahmed, J. Lavers (1989)
Boundary element analysis of the electromagnet casting mouldIEEE Transactions on Magnetics, 25
L. Illoul, J. Yvonet, F. Chinesta, S. Clénet (2006)
Application of the natural-element method to model moving electromagnetic devicesIEEE Transactions on Magnetics, 42
P. Di Barba, B. Forghani, D.A. Lowther
Discrete‐valued design optimization of a multiple coil inductor for uniform surface heating
J. Nerg, P. Silventoinen, K. Tolsa, J. Pyrhonen, J. Partanen (1999)
A dynamic model for the simulation of induction heating devicesIEEE International Magnetics Conference
S. Viana, D. Rodger, H. Lai (2004)
Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics, 151
M. Horii, N. Takahashi, T. Narita (2000)
Investigation of evolution strategy and optimization of induction heating modelIEEE Transactions on Magnetics, 36
Kok-Meng Lee, Qiang Li, H. Sun (2006)
Effects of numerical formulation on magnetic field computation using meshless methodsIEEE Transactions on Magnetics, 42
Dong-Hun Kim, S. Hahn, I. Park, G. Cha (1999)
Computation of three-dimensional electromagnetic field including moving media by indirect boundary integral equation methodIEEE Transactions on Magnetics, 35
R. Dudley, P. Burke (1972)
The Prediction of Current Distribution in Induction Heating InstallationsIEEE Transactions on Industry Applications
S.Y. Yang, S. Ho, P. Ni, G. Ni (2006)
A combined wavelet-FE method for transient electromagnetic-field computationsIEEE Transactions on Magnetics, 42
F. Dughiero, M. Forzan, S. Lupi, M. Tasca (1998)
Numerical and experimental analysis of an electro-thermal coupled problem for transverse flux induction heating equipmentIEEE Transactions on Magnetics, 34
J. Lavers, M. Ahmed (1988)
A boundary element method to predict the shape of a molten metal free surface in EM confinement fieldIEEE Transactions on Magnetics, 24
G.F. Parreira, A. Fonseca, A. Lisboa, E.J. Silva, R. Mesquita (2006)
Efficient algorithms and data structures for element-free Galerkin methodIEEE Transactions on Magnetics, 42
D. Miyagi, Ai Saitou, N. Takahashi, N. Uchida, K. Ozaki (2005)
Improvement of zone control induction heating equipment for high-speed processing of semiconductor devicesIEEE Transactions on Magnetics, 42
H. Hedia, F. Henrotte, P. Dular, J. Remacle, W. Legros (1998)
Optimization of the width of a thin plate in a transverse flux induction furnaceIEEE Transactions on Magnetics, 34
R. Hoppe, R. Kornhuber (1990)
Multi‐grid solution of two coupled Stefan equations arising in induction heating of large steel slabsInternational Journal for Numerical Methods in Engineering, 30
M. Bullo, F. Dughiero, M. Guarnieri, E. Tittonel (2005)
A 2-D formulation for eddy current anisotropic problems with the cell methodIEEE Transactions on Magnetics, 41
S. Wanser, L. Krahendbuhl, A. Nicolas (1994)
Computation of 3D induction hardening problems by combined finite and boundary element methodsIEEE Transactions on Magnetics, 30
E. Wrona, B. Nacke, W. Schwenk
Solving complex induction hardening tasks by numerical methods
N. Bianchi, F. Dughiero (1995)
Optimal design techniques applied to transverse-flux induction heating systems, 31
D. Rodger, T. Karaguler, P. Leonard (1989)
A formaulation for 3D moving conductor eddy current problemsInternational Magnetics Conference
U. Ludtke, D. Schulze (1998)
Numerical simulation of continuous induction steel bar end heating with material properties depending on temperature and magnetic fieldIEEE Transactions on Magnetics, 34
S. Ho, Shiyou Yang, H. Wong, E. Lo, Guangzheng Ni (2005)
Refinement computations of electromagnetic fields using FE and meshless methodsIEEE Transactions on Magnetics, 41
M. Odamura (1985)
Upwind Finite Element Solution for Saturated Travelling Magnetic Field ProblemsElectrical Engineering in Japan, 105
A. Muhlbauer, A. Muiznieks, H. Lessmann (1993)
The calculation of 3D high-frequency electromagnetic fields during induction heating using the BEM, 29
W. Mai, G. Henneberger (1998)
Calculation of the transient temperature distribution in a TFIH device using the impedance boundary conditionIEEE Transactions on Magnetics, 34
T. Fawzi, K. Ali, P. Burke (1983)
Boundary integral equations analysis of induction devices with rotational symmetryIEEE Transactions on Magnetics, 19
A. Muiznieks, A. Krauze
State of the art of numerical modelling of industrial single crystal CZ and FZ growth
A. Foggia, J. Sabonnadiere, P. Silvester (1975)
Finite element solution of saturated travelling magnetic field problemsIEEE Transactions on Power Apparatus and Systems, 94
A. Mühlbauer
Über die elektrodynamischen kräfte in der schmelze von induktionsöfen
W. Esmarch
Zur theorie der kernlosen induktionsöfen
M. Clemens, T. Weiland, M. Wilke (2000)
Transient eddy current formulation including moving conductors using the FI methodIEEE Transactions on Magnetics, 36
T. Todaka, M. Enozkizono
Optimal design method with the boundary element method for a high frequency quenching coil
T. Fawzi, P. Burke (1974)
Use of surface integral equations for analysis of TM-induction problem, 121
W. Mai, G. Henneberger (1999)
Field and temperature calculations in transverse flux inductive heating devices heating nonparamagnetic materials using surface impedance formulations for nonlinear eddy-current problems, 35
K. Reichert
Die numerische berechnung der elekromagnetisch verursachten strömung in induktionstiegelöfen
S. Dappen, G. Henneberger (1997)
A sensitivity approach for the optimization of loss efficienciesIEEE Transactions on Magnetics, 33
S. Dappen, G. Henneberger (1996)
Time-harmonic eddy-current calculation with capacitive circuit parametersIEEE Transactions on Magnetics, 32
(2004)
Simulation of inductive heating
A. Adly (1996)
Solution of induction heating problems involving media with hysteresisJournal of Applied Physics, 79
J. Lavers (1983)
Finite element solution of nonlinear two dimensional TE-mode Eddy current problemsIEEE Transactions on Magnetics, 19
K. Tani, T. Yamada (1997)
New approach to coupled magnetic and thermal problem in induction heating system with travelling conducting plate using cubic interpolated pseudo-particle methodIEEE Transactions on Magnetics, 33
S. Salon, J. Schneider (1982)
A hybrid finite element-boundary integral formulation of the eddy current problemIEEE Transactions on Magnetics, 18
B. Nacke, E. Wrona
New 3D simulation tools for the design of complex induction hardening problems
N. Takahashi, T. Nakata, K. Fujiwara, T. Imai (1992)
Investigation of effectiveness of edge elementsIEEE Transactions on Magnetics, 28
J. Szekely, S. Asai (1975)
The General Mathematical Statement of Turbulent Recirculatory FlowsIsij International, 15
E. Kolbe, W. Reiss
Eine methode zur numerischen bestimmumg der stromdichteverteilung in induktiv erwärmten körpern unterschiedlicher geometrischer form
Z. Wang, W. Huang, W. Jia
3D multifield FEM computation of transverse flux heating for moving strips
T. Bauer, G. Henneberger (1999)
Three-dimensional calculation and optimization of the acoustic field of an induction furnace caused by electromagnetic forces, 35
F. Dughiero, M. Forzan, S. Lupi (1997)
3D solution of electromagnetic and thermal coupled field problems in the continuous transverse flux heating of metal stripsIEEE Transactions on Magnetics, 33
E. Deeley, X. Xu (1995)
An improved model for a transient surface impedance boundary condition, 31
S. Viana, D. Rodger, H. Lai (2006)
Application of the local radial point interpolation method to solve eddy-current problemsIEEE Transactions on Magnetics, 42
S. Yuferev, L. Kettunen (2000)
Implementation of high order surface impedance boundary conditions using vector approximating functionsIEEE Transactions on Magnetics, 36
Qiang Li, Kok-Meng Lee (2006)
An adaptive meshless method for magnetic field computationIEEE Transactions on Magnetics, 42
S. Bensaid, D. Trichet, J. Fouladgar (2005)
3-D Simulation of induction heating of anisotropic composite materialsIEEE Transactions on Magnetics, 41
F. Bay, V. Labbé, Y. Favennec, J. Chenot (2003)
A numerical model for induction heating processes coupling electromagnetism and thermomechanicsInternational Journal for Numerical Methods in Engineering, 58
F. Dughiero, S. Lupi, P. Siega (1995)
Calculation of forces in travelling wave induction heating systemsIEEE Transactions on Magnetics, 31
G. Holmdahl, Y. Sundberg
Berechnung von induktionserwärmung mit digitalrechner
F. Hegewaldt
Berechnung der stromverdrängung nach einem differenzenverfahren
F. Bioul, F. Dupret (2005)
Application of asymptotic expansions to model two-dimensional induction heating systems. Part I: calculation of electromagnetic field distributionIEEE Transactions on Magnetics, 41
H. Moffatt, M. Proctor (1984)
Metallurgical applications of magnetohydrodynamics : proceedings of a symposium of the International Union of Theoretical and Applied Mechanics held at Trinity College, Cambridge, UK 6-10 September 1982
W. Erdmann, A. Mühlbauer
Praxisnahe Berechnung des elektrischen und magnetohydrodynamischen verhaltens von induktionstiegelöfen
M. Bullo, F. Dughiero, M. Guarnieri, E. Tittonel (2006)
Nonlinear coupled thermo-electromagnetic problems with the cell methodIEEE Transactions on Magnetics, 42
S. Lupi, A. Morini
Induction heating of cylindrical rods using multiple coils
S. Hosseini, Atabak Kashtiban, Ghasem Alizadeh (2006)
Particle Swarm Optimization and Finite-Element Based Approach for Induction Heating Cooker Design2006 SICE-ICASE International Joint Conference
O. Bíró, K. Preis (1990)
Finite element analysis of 3-D eddy currentsIEEE Transactions on Magnetics, 26
P. Massé, B. Morel, T. Breville (1985)
A finite element prediction correction scheme for magneto-thermal coupled problem during curie transitionIEEE Transactions on Magnetics, 21
C. Herault, Y. Maréchal (1999)
Boundary and interface conditions meshless methods [for EM field analysis], 35
P. Eustache, G. Meunier, J. Coulomb (1996)
Finite element toolbox for generic coupling (magnetic, thermal, etc.)IEEE Transactions on Magnetics, 32
J. Lavers (1983)
Numerical solution methods for electroheat problemsIEEE Transactions on Magnetics, 19
L. Krähenbühl, O. Fabrègue, S. Wanser, M. Dias, A. Nicolas (1997)
Surface impedances, BIEM and FEM coupled with 1D non-linear solutions to solve 3D high frequency eddy current problemsIEEE Transactions on Magnetics, 33
N. Esposito, A. Musolino, M. Raugi (1996)
Modelling of three-dimensional nonlinear eddy current problems with conductors in motion by an integral formulationIEEE Transactions on Magnetics, 32
I. Tsukerman, A. Konrad, G. Bedrosian, M. Chari (1993)
A survey of numerical methods for transient eddy current problems, 29
Y. Favennec, V. Labbé, F. Bay (2003)
Induction heating processes optimization a general optimal control approachJournal of Computational Physics, 187
A. Umbrashko, E. Baake, B. Nacke, A. Jakovičs (2006)
Modeling of the turbulent flow in induction furnacesMetallurgical and Materials Transactions B, 37
J. Nerg, J. Partanen (2001)
A Simplified FEM Based Calculation Model for 3-D Induction Heating Problems Using Surface
W. Hodgkins, J. Waddington (1982)
The solution of 3-dimensional induction heating problems using an integral equation methodIEEE Transactions on Magnetics, 18
T. Nakata, N. Takahashi, K. Fujiwara, K. Muramatsu, H. Ohashi, Huibin Zhu (1995)
Practical analysis of 3-D dynamic nonlinear magnetic field using time-periodic finite element method, 31
Z. Wang, W. Huang, W. Jia, Q. Zhao, Y. Wang, Weili Yan, D. Schulze, G. Martín, U. Luedtke (1999)
3D multifields FEM computation of transverse flux induction heating for moving-strips, 35
T. Todaka, M. Enokizono (1996)
Optimal design method with the boundary element for high-frequency quenching coilIEEE Transactions on Magnetics, 32
Liang Xuan, Zhiwei Zeng, B. Shanker, L. Udpa (2004)
Element-free Galerkin method for static and quasi-static electromagnetic field computationIEEE Transactions on Magnetics, 40
Myung-Jun Choi, I. Park (1999)
Transient analysis of magnetodynamic systems using Fourier transform and frequency sensitivity, 35
S. Lupi
Modeling for research and industrial development in induction heating
M.V.K. Chari
Finite element analysis of nonlinear magnetic fields in electric machines
F. Dughiero, M. Forzan, S. Lupi (1996)
Solution of coupled electromagnetic and thermal problems in induction heating applications
O. Bottauscio, M. Chiampi, A. Manzin (2006)
Element-free galerkin method in eddy-current problems with ferromagnetic mediaIEEE Transactions on Magnetics, 42
Y. Sundberg
Induction Heating
L. Gong, R. Hagel, R. Unbehauen (1992)
One Solution of the Nonlinear Eddy Current Field Coupled to the Nonlinear Heat TransferDigest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation
A. Mühlbauer
Historical overview of induction melting and heating
J. Nerg, J. Partanen (2000)
Numerical solution of 2D and 3D induction heating problems with non-linear materml properties taken into account, 36
J.D. Lavers, G.R. Tällback, E.D. Lavers, L.S. Beitelman, C.P. Curran
Flow control in continuous casting with dual coil EMS: a computational simulation study
N. Ida (1988)
Modeling of velocity effects in eddy current applicationsJournal of Applied Physics, 63
I. Tsukerman (2005)
Electromagnetic applications of a new finite-difference calculusIEEE Transactions on Magnetics, 41
E. Baake, B. Nacke, A. Umbrashko, A. Jakovičs (2003)
Turbulent flow dynamics, heat transfer and mass exchange in the melt of induction furnacesCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22
J. Lavers (1989)
Computational Methods for the Analysis of Molten Metal Electromagnetic Confinement SystemsIsij International, 29
E. Cardelli, M. Gimignani, M. Raugi (1994)
Numerical modelling of 3-D coupled electromagnetic and heating diffusion problemsIEEE Transactions on Magnetics, 30
K. Tani, T. Nishio, T. Yamada, Y. Kawase (1999)
Transient finite element method using edge elements for moving conductor, 35
B. Dumont, A. Gagnoud (2000)
3D finite element method with impedance boundary condition for the modeling of molten metal shape in electromagnetic castingIEEE Transactions on Magnetics, 36
Y. Kawase, T. Miyatake, K. Hirata (2000)
Thermal analysis of steel blade quenching by induction heatingIEEE Transactions on Magnetics, 36
L. Gong, R. Hagel, R. Unbehauen (1992)
A new approach to the nonlinear eddy current field coupled to the nonlinear heat transferConference Record of the 1992 IEEE Industry Applications Society Annual Meeting
S. Niikura, A. Kameari (1992)
Analysis of eddy current and force in conductors with motionIEEE Transactions on Magnetics, 28
P. Agarwal (1959)
Eddy-current losses in solid and laminated ironTransactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 78
S. Ho, Shiyou Yang, H. Wong, Guangzheng Ni (2004)
A meshless collocation method based on radial basis functions and waveletsIEEE Transactions on Magnetics, 40
T. Fawzi, M. Ahmed, P. Burke (1985)
On the use of the impedance boundary conditions in eddy current problemsIEEE Transactions on Magnetics, 21
W. Andree, D. Schulze, Zanming Wang (1994)
3D eddy current computation in the transverse flux induction heating equipmentIEEE Transactions on Magnetics, 30
E. Xu, J. Simkin, S.C. Taylor (2006)
Streamline upwinding in a 3-D edge-element method modeling eddy currents in moving conductorsIEEE Transactions on Magnetics, 42
P. Sergeant, U. Adriano, L. Dupré, O. Bottauscio, M. Wulf, M. Zucca, J. Melkebeek (2004)
Passive and active electromagnetic shielding of induction heatersIEEE Transactions on Magnetics, 40
E. Baake, A. Mühlbauer, A. Jakowitsch, W. Andree (1995)
Extension of the k-ε model for the numerical simulation of the melt flow in induction crucible furnacesMetallurgical and Materials Transactions B, 26
J. Zgraja (2005)
The optimisation of induction heating system based on multiquadric function approximationCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24
C. Hérault, Y. Maréchal
Boundary and interface conditions in meshless methods
C. Monzel, G. Henneberger (2002)
Temperature solver for highly nonlinear ferromagnetic materials for thin moving sheets in transversal flux induction heatingIEEE Transactions on Magnetics, 38
P. Silvester, C. Haslam (1972)
MAGNETOTELLURIC MODELLING BY THE FINITE ELEMENT METHODGeophysical Prospecting, 20
M. Chari (1974)
Finite-Element Solution of the Eddy-Current Problem in Magnetic StructuresIEEE Transactions on Power Apparatus and Systems, 93
M. Bullo, V. D'Ambrosio, F. Dughiero, M. Guarnieri (2006)
Coupled electrical and thermal transient conduction problems with a quadratic interpolation cell method approachIEEE Transactions on Magnetics, 42
T. Pham, S. Hoole (1995)
Unconstrained optimization of coupled magneto-thermal problems, 31
E. Northrup (1907)
Some Newly Observed Manifestations of Forces in the Interior of an Electric ConductorPhysical Review, 24
K. Schönbacher
Zur berechnumg von induktionsöfen
H. Sande, H. Gersem (1999)
Motional magnetic finite element method applied to high speed rotating devicesCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 19
G. Paoli, O. Bíró (1998)
Time harmonic eddy currents in non‐linear mediaCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 17
S. Yamada, P. Biringer, K. Bessho (1991)
Calculation of nonlinear eddy-current problems by the harmonic balance finite element method, 27
T. Nakata, N. Takahashi, K. Fujiwara, T. Imai (1990)
Effects of permeability of magnetic materials on errors of the T- Omega methodIEEE Transactions on Magnetics, 26
Y. Kawase, T. Yamaguchi, N. Hayashi (1992)
3-D Finite Element Analysis for Molten Metal Shape in electromagnetic Melting SystemDigest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation
M. Ahmed, J. Lavers, P. Burke (1989)
Boundary element application of induction heating devices with rotational symmetryIEEE Transactions on Magnetics, 25
M. El-Markaby, T. Fawzi, M. Ahmed (1982)
Approximate treatment of nonlinear eddy current problemsIEEE Transactions on Magnetics, 18
S. Ho, Shiyou Yang, Guangzheng Ni, H. Wong, Yuhuai Wang (2004)
Numerical analysis of thin skin depths of 3-D eddy-current problems using a combination of finite element and meshless methodsIEEE Transactions on Magnetics, 40
K. Ismail, R. Marzouk (1996)
Iterative hybrid finite element-boundary element method for the analysis of induction heating system with nonlinear chargeIEEE Transactions on Magnetics, 32
R. Clough (1960)
The Finite Element Method in Plane Stress Analysis
A. Umbrashko, E. Baake, B. Nacke, A. Jakovičs (2005)
Experimental investigations and numerical modelling of the melting process in the cold crucibleCompel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24
R. Sabariego, P. Sergeant, J. Gyselinck, P. Dular, L. Dupré, J. Melkebeek (2006)
Fast multipole accelerated finite element-boundary element analysis of shielded induction heatersIEEE Transactions on Magnetics, 42
A. Kost, J. Bastos, K. Miethner, L. Janicke (2002)
Improvement of nonlinear impedance boundary conditionsIEEE Transactions on Magnetics, 38
O. Heaviside
The induction of currents in cores
J. Nerg, J. Partanen
A simplified FEM based calculation method for 3‐D induction heating problems using surface impedance formulations
E.F. Northrup
Some newly observed manifestations of forces in the interior of electric currents
L. Pichon, A. Razek (1989)
Hybrid finite-element method and boundary-element method using time-stepping for eddy-current calculation in axisymmetric problems, 136
Xiaoguang Yang, Youhua Wang, Fugui Liu, Qingxin Yang, Weili Yan (2004)
The use of neural networks combined with FEM to optimize the coil geometry and structure of transverse flux induction equipmentsIEEE Transactions on Applied Superconductivity, 14
J.D. Lavers, P.P. Bringer
An analysis of the coreless induction furnace: axial distribution of electric and magnetic fields
R. Baker (1958)
Classical heat flow problems applied to induction billet heatingTransactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 77
T. Nakata, N. Takahashi, K. Fujiwara, K. Muramatsu (1990)
Investigation of effectiveness of various methods with different unknown variables for 3-D eddy current analysisIEEE Transactions on Magnetics, 26
V. Cingoski, N. Miyamoto, H. Yamashita (1998)
Element-free Galerkin method for electromagnetic field computationsIEEE Transactions on Magnetics, 34
Purpose – To provide a selective bibliography for researchers and graduate students who have an interest in induction processes applied to the electromagnetic processing of materials. Design/methodology/approach – The objective is to provide references that identify seminal, early work, and references that represent the current state of the art. References are listed in categories that cover the broad range of induction modeling and application issues. Findings – A brief overview of the key areas in induction processing of materials is provided, but greater emphasis and space is devoted to the references provided. Research limitations/implications – The middle years of each topic area are not covered. Practical implications – A very comprehensive coverage of material is provided to those with an interest in induction processing of materials. Originality/value – This paper fulfils an identified information/resources need.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Mar 7, 2008
Keywords: Modelling; Numerical analysis; Physical properties of materials
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.