Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to investigate the radiation and magnetohydrodynamic effect on the flow toward a stagnation point of an exponentially shrinking sheet in a hybrid nanofluid.Design/methodology/approachThe governing partial differential equations are transformed into a set of similarity equations and are then solved numerically using the boundary value problem solver, bvp4c, available in MATLAB software. The effects of several physical parameters on the flow and the thermal characteristics of the hybrid nanofluid are analyzed and discussed.FindingsNumerical results clarify that the dual solutions arise for the shrinking case (λ < 0). The critical values expand for the stronger magnetic field. Besides, the skin friction and the heat transfer coefficients enhance with the rise of the magnetic field and the hybrid nanoparticles. The heat transfer rate increases by 10.11% for the nanofluid and 28.69% for the hybrid nanofluid compared to the regular fluid. In addition, the presence of radiation gives a higher heat transfer rate. Using the stability analysis, it is found that the first solution is stable, and the second solution is unstable, over time.Originality/valueThe stagnation point flow problem has been widely studied for the flow over a stretching sheet, but only limited findings can be found for the flow over a shrinking sheet. Therefore, the present study considers the problem of the stagnation point flow over a shrinking sheet in a Cu-Al2O3/water hybrid nanofluid with the effects of magnetic field and thermal radiation. The dual solutions of the hybrid nanofluid flow over a shrinking sheet are obtained. Further analysis shows that only one of the solutions is stable and thus physically reliable as time evolves.
International Journal of Numerical Methods for Heat & Fluid Flow – Emerald Publishing
Published: Jan 20, 2022
Keywords: Stability analysis; Dual solutions; Shrinking sheet; MHD; Hybrid nanofluid; Bvp4c; Stagnation point
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.