Access the full text.
Sign up today, get DeepDyve free for 14 days.
Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability of reduced piezoelectric model often cannot be preserved. In previous research studies, “MOR after Schur,” “Schur after MOR” and “multiphysics structure preserving MOR” methods have proven successful in obtaining stable reduced piezoelectric energy harvester models. Though the stability preservation of “MOR after Schur” and “Schur after MOR” methods has already been mathematically proven, the “multiphysics structure preserving MOR” method was not. This paper aims to provide the missing mathematical proof of “multiphysics structure preserving MOR.”Design/methodology/approachPiezoelectric energy harvesters can be represented by system of differential-algebraic equations obtained by the finite element method. According to the block structure of its system matrices, “MOR after Schur” and “Schur after MOR” both perform Schur complement transformations either before or after the MOR process. For the “multiphysics structure preserving MOR” method, the original block structure of the system matrices is preserved during MOR. FindingsThis contribution shows that, in comparison to “MOR after Schur” and “Schur after MOR” methods, “multiphysics structure preserving MOR” method performs the Schur complement transformation implicitly, and therefore, stabilizes the reduced piezoelectric model.Originality/valueThe stability preservation of the reduced piezoelectric energy harvester model obtained through “multiphysics structure preserving MOR” method is proven mathematically and further validated by numerical experiments on two different piezoelectric energy harvester devices.
COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: May 20, 2020
Keywords: Piezoelectricity; Energy harvester; Model order reduction; Finite element method; Coupled systems
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.