Purpose – The purpose of this paper is to find the efficient iterative methods for solving the general matrix equation A1X + XA2 + A3XH + XHA4 = B (including Lyapunov and Sylvester matrix equations as special cases) with the unknown complex (reflexive) matrix X . Design/methodology/approach – By applying the principle of hierarchical identification and the Hermitian/skew‐Hermitian splitting of the coefficient matrix quadruplet A1; A2; A3; A4 the authors propose a shift‐splitting hierarchical identification (SSHI) method to solve the general linear matrix equation A1X + XA2 + A3XH + XHA4 = B . Also, the proposed algorithm is extended for finding the reflexive solution to this matrix equation. Findings – The authors propose two iterative methods for finding the solution and reflexive solution of the general linear matrix equation, respectively. The proposed algorithms have a simple, neat and elegant structure. The convergence analysis of the methods is also discussed. Some numerical results are given which illustrate the power and effectiveness of the proposed algorithms. Originality/value – So far, several methods have been presented and used for solving the matrix equations by using vec operator and Kronecker product, generalized inverse, generalized singular value decomposition (GSVD) and canonical correlation decomposition (CCD) of matrices. In several cases, it is difficult to find the solutions by using matrix decomposition and generalized inverse. Also vec operator and Kronecker product enlarge the size of the matrix greatly therefore the computations are very expensive in the process of finding solutions. To overcome these complications and drawbacks, by using the hierarchical identification principle and the Hermitian=skew‐Hermitian splitting of the coefficient matrix quadruplet (A1; A2; A3; A4), the authors propose SSHI methods for solving the general matrix equation.
Engineering Computations – Emerald Publishing
Published: Nov 15, 2011
Keywords: Control theory; Programming and algorithm theory; Iterative methods; Shift‐splitting hierarchical identification; Matrix equation; Reflexive matrix; Iterative algorithm
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.