Solving a mixture model of two-phase flow with velocity non-equilibrium using WENO wavelet methods

Solving a mixture model of two-phase flow with velocity non-equilibrium using WENO wavelet methods PurposeThe purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular interest is gas–liquid two-phase mixture with velocity non-equilibrium. Numerical simulations are carried out on different scenarios of one-dimensional Riemann problems for gas–liquid flows. Results are validated and qualitatively compared with solutions provided by other standard numerical methods.Design/methodology/approachThis paper extends the framework of WENO wavelet adaptive method to a fully hyperbolic two-phase flow model in a conservative form. The grid adaptivity in each time step is provided by the application of a thresholded interpolating wavelet transform. This facilitates the construction of a small yet effective sparse point representation of the solution. The method of Lax–Friedrich flux splitting is used to resolve the spatial operator in which the flux derivatives are approximated by the WENO scheme.FindingsHyperbolic models of two-phase flow in conservative form are efficiently solved, as shocks and rarefaction waves are precisely captured by the chosen methodology. Substantial computational gains are obtained through the grid reduction feature while maintaining the quality of the solutions. The results indicate that WENO wavelet methods are robust and sufficient to accurately simulate gas–liquid mixtures.Originality/valueResolution of two-phase flows is rarely studied using WENO wavelet methods. It is the first time such a study on the relative velocity is reported in two-phase flows using such methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Solving a mixture model of two-phase flow with velocity non-equilibrium using WENO wavelet methods

Loading next page...
 
/lp/emerald-publishing/solving-a-mixture-model-of-two-phase-flow-with-velocity-non-RAJfv4OWiO
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0961-5539
DOI
10.1108/HFF-05-2017-0215
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular interest is gas–liquid two-phase mixture with velocity non-equilibrium. Numerical simulations are carried out on different scenarios of one-dimensional Riemann problems for gas–liquid flows. Results are validated and qualitatively compared with solutions provided by other standard numerical methods.Design/methodology/approachThis paper extends the framework of WENO wavelet adaptive method to a fully hyperbolic two-phase flow model in a conservative form. The grid adaptivity in each time step is provided by the application of a thresholded interpolating wavelet transform. This facilitates the construction of a small yet effective sparse point representation of the solution. The method of Lax–Friedrich flux splitting is used to resolve the spatial operator in which the flux derivatives are approximated by the WENO scheme.FindingsHyperbolic models of two-phase flow in conservative form are efficiently solved, as shocks and rarefaction waves are precisely captured by the chosen methodology. Substantial computational gains are obtained through the grid reduction feature while maintaining the quality of the solutions. The results indicate that WENO wavelet methods are robust and sufficient to accurately simulate gas–liquid mixtures.Originality/valueResolution of two-phase flows is rarely studied using WENO wavelet methods. It is the first time such a study on the relative velocity is reported in two-phase flows using such methods.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Sep 3, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off