Simultaneous Equations

Simultaneous Equations MANY problems in engineering science resolve themselves into the solution of simultaneous linear equations. In general when more than three variables are present these equations tend to become troublesome to solve their numerical solutions besides being tedious frequently involve differences between quantities very nearly equal, so that unless the calculations be carried to several significant figures considerable errors are likely to arise in the results. To overcome this difficulty recent research has been directed towards the development of approximate and successive approximation methods suitable for routine application. The most promising method appears to be that based on iteration. Such methods were originally given by Gauss and Seidel. In R. & M. 1711 the writer put forward an iteration process which has the advantage of being carried out in a simple tabular form and in which the iteration is carried out not with current values of the variables, but with the differences of consecutive current values. The iteration method is only applicable when the coefficients of the variables satisfy certain conditions which will be discussed in the sequel. For the present the convergency of the process will be assumed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aircraft Engineering and Aerospace Technology Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/simultaneous-equations-TkTPYMndBC
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0002-2667
DOI
10.1108/eb030483
Publisher site
See Article on Publisher Site

Abstract

MANY problems in engineering science resolve themselves into the solution of simultaneous linear equations. In general when more than three variables are present these equations tend to become troublesome to solve their numerical solutions besides being tedious frequently involve differences between quantities very nearly equal, so that unless the calculations be carried to several significant figures considerable errors are likely to arise in the results. To overcome this difficulty recent research has been directed towards the development of approximate and successive approximation methods suitable for routine application. The most promising method appears to be that based on iteration. Such methods were originally given by Gauss and Seidel. In R. & M. 1711 the writer put forward an iteration process which has the advantage of being carried out in a simple tabular form and in which the iteration is carried out not with current values of the variables, but with the differences of consecutive current values. The iteration method is only applicable when the coefficients of the variables satisfy certain conditions which will be discussed in the sequel. For the present the convergency of the process will be assumed.

Journal

Aircraft Engineering and Aerospace TechnologyEmerald Publishing

Published: May 1, 1939

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off