Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

SIMULATION OF MOS CIRCUITS USING SPECTRAL TECHNIQUE IN RELAXATION FRAMEWORK

SIMULATION OF MOS CIRCUITS USING SPECTRAL TECHNIQUE IN RELAXATION FRAMEWORK Waveform relaxation has potential to overcome problem of excessive computer run times which are necessary for simulation of larger circuits with the use of existing simulators. One of the attractive features of waveform relaxation is its suitability for parallel implementation. Amount of data necessary for interchange between parallel processors after each iteration influences the overall performance of simulation. Method of integration based on Chebyshev series provides for representation of solutions in the most compact form which makes it very attractive for parallel implementations. This paper presents some results of numerical experiments with the spectral integration applied in the relaxation framework to a number of MOS circuits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/simulation-of-mos-circuits-using-spectral-technique-in-relaxation-suxtoPbATu
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/eb051713
Publisher site
See Article on Publisher Site

Abstract

Waveform relaxation has potential to overcome problem of excessive computer run times which are necessary for simulation of larger circuits with the use of existing simulators. One of the attractive features of waveform relaxation is its suitability for parallel implementation. Amount of data necessary for interchange between parallel processors after each iteration influences the overall performance of simulation. Method of integration based on Chebyshev series provides for representation of solutions in the most compact form which makes it very attractive for parallel implementations. This paper presents some results of numerical experiments with the spectral integration applied in the relaxation framework to a number of MOS circuits.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Apr 1, 1991

There are no references for this article.