Simplified probabilistic seismic assessment of dampers in tall and braced structures in buildings

Simplified probabilistic seismic assessment of dampers in tall and braced structures in buildings PurposeThe paper aims to focus on adjacent buildings response, equipped with damper, to analyze the vibration reduction in the nearby buildings. The nearby buildings were also equipped with dampers. The occurrence of adjacent buildings with adequate or inadequate space in between is a common phenomenon. However, many a times not much attention is paid to provide or check gap adequacy or to connect the two buildings suitably to avoid pounding of two structures on each other. This study emphasizes the utility of providing a damper in between two adjacent buildings for better performance.Design/methodology/approachThe two steel structures taken for study are prototype of two structures normally found in industrial structure such as power plant, where in one of boiler structure is often tall and braced and short structure of turbine building which is moment resistant, modeled in SAP. There could be similar such structures which are often connected to a platform or a walkway with a sliding end, so as not to transfer horizontal force to other structures. If the advantage of stiffness of tall braced structure is taken into account, shorter structure can be suitably connected to braced structure to transfer forces during seismic cases under nonlinear conditions, thereby avoiding pounding (incase gap is too less), reducing response and thus optimizing the section sizes. The structures were subjected to El Centro earthquake, to simulate MCE (which could be the other site TH scaled up as desired for real site PGA), and damper location and parameters were varied to find optimum value which offers reduced base shear, reduced top floor displacement and minimum inter story drift and highest energy absorption by fluid viscous dampers.FindingsThe findings show that taller structures, which are braced, have more stiffness; the effect of damper is more pronounced in reducing displacement of shorter moment resistant structure to the tune of 60%, with suitably defined Cd value which is found to be 600 KNs/m for the present study. Thus, advantage of stiffener structure is taken to leverage and reduce the displacement of shorter moment resistant structure in reducing its displacement under nonlinear conditions of seismic case.Originality/valueThis work shows the original findings, of the adjacent buildings response, equipped with damper, to analyze the vibration reduction on other buildings which were planned to be constructed nearby. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Engineering, Design and Technology Emerald Publishing

Simplified probabilistic seismic assessment of dampers in tall and braced structures in buildings

Loading next page...
 
/lp/emerald-publishing/simplified-probabilistic-seismic-assessment-of-dampers-in-tall-and-UE1LChCtob
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1726-0531
DOI
10.1108/JEDT-09-2019-0234
Publisher site
See Article on Publisher Site

Abstract

PurposeThe paper aims to focus on adjacent buildings response, equipped with damper, to analyze the vibration reduction in the nearby buildings. The nearby buildings were also equipped with dampers. The occurrence of adjacent buildings with adequate or inadequate space in between is a common phenomenon. However, many a times not much attention is paid to provide or check gap adequacy or to connect the two buildings suitably to avoid pounding of two structures on each other. This study emphasizes the utility of providing a damper in between two adjacent buildings for better performance.Design/methodology/approachThe two steel structures taken for study are prototype of two structures normally found in industrial structure such as power plant, where in one of boiler structure is often tall and braced and short structure of turbine building which is moment resistant, modeled in SAP. There could be similar such structures which are often connected to a platform or a walkway with a sliding end, so as not to transfer horizontal force to other structures. If the advantage of stiffness of tall braced structure is taken into account, shorter structure can be suitably connected to braced structure to transfer forces during seismic cases under nonlinear conditions, thereby avoiding pounding (incase gap is too less), reducing response and thus optimizing the section sizes. The structures were subjected to El Centro earthquake, to simulate MCE (which could be the other site TH scaled up as desired for real site PGA), and damper location and parameters were varied to find optimum value which offers reduced base shear, reduced top floor displacement and minimum inter story drift and highest energy absorption by fluid viscous dampers.FindingsThe findings show that taller structures, which are braced, have more stiffness; the effect of damper is more pronounced in reducing displacement of shorter moment resistant structure to the tune of 60%, with suitably defined Cd value which is found to be 600 KNs/m for the present study. Thus, advantage of stiffener structure is taken to leverage and reduce the displacement of shorter moment resistant structure in reducing its displacement under nonlinear conditions of seismic case.Originality/valueThis work shows the original findings, of the adjacent buildings response, equipped with damper, to analyze the vibration reduction on other buildings which were planned to be constructed nearby.

Journal

Journal of Engineering, Design and TechnologyEmerald Publishing

Published: Jan 2, 2020

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off