Similarity-based approach for accurately retrieving similar cases to intelligently handle online complaints

Similarity-based approach for accurately retrieving similar cases to intelligently handle online... PurposeThe purpose of this paper is to propose a similarity-based approach to accurately retrieve reference solutions for the intelligent handling of online complaints.Design/methodology/approachThis approach uses a case-based reasoning framework and firstly formalizes existing online complaints and their solutions, new online complaints, and complaint products, problems and content as source cases, target cases and distinctive features of each case, respectively. Then the process of using existing word-level, sense-level and text-level measures to assess the similarities between complaint products, problems and contents is explained. Based on these similarities, a measure with high accuracy in assessing the overall similarity between cases is designed. The effectiveness of the approach is evaluated by numerical and empirical experiments.FindingsThe evaluation results show that a measure simultaneously considering the features of similarity at word, sense and text levels can obtain higher accuracy than those measures that consider only one level feature of similarity; and that the designed measure is more accurate than all of its linear combinations.Practical implicationsThe approach offers a feasible way to reduce manual intervention in online complaint handling. Complaint products, problems and content should be synthetically considered when handling an online complaint. The designed procedure of the measure with high accuracy can be applied in other applications that consider multiple similarity features or linguistic levels.Originality/valueA method for linearly combining the similarities at all linguistic levels to accurately assess the overall similarities between online complaint cases is presented. This method is experimentally verified to be helpful to improve the accuracy of online complaint case retrieval. This is the first study that considers the accuracy of the similarity measures for online complaint case retrieval. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Kybernetes Emerald Publishing

Similarity-based approach for accurately retrieving similar cases to intelligently handle online complaints

Kybernetes, Volume 46 (7): 22 – Aug 7, 2017

Loading next page...
 
/lp/emerald-publishing/similarity-based-approach-for-accurately-retrieving-similar-cases-to-S0XxNcQwFl
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0368-492X
DOI
10.1108/K-10-2016-0271
Publisher site
See Article on Publisher Site

Abstract

PurposeThe purpose of this paper is to propose a similarity-based approach to accurately retrieve reference solutions for the intelligent handling of online complaints.Design/methodology/approachThis approach uses a case-based reasoning framework and firstly formalizes existing online complaints and their solutions, new online complaints, and complaint products, problems and content as source cases, target cases and distinctive features of each case, respectively. Then the process of using existing word-level, sense-level and text-level measures to assess the similarities between complaint products, problems and contents is explained. Based on these similarities, a measure with high accuracy in assessing the overall similarity between cases is designed. The effectiveness of the approach is evaluated by numerical and empirical experiments.FindingsThe evaluation results show that a measure simultaneously considering the features of similarity at word, sense and text levels can obtain higher accuracy than those measures that consider only one level feature of similarity; and that the designed measure is more accurate than all of its linear combinations.Practical implicationsThe approach offers a feasible way to reduce manual intervention in online complaint handling. Complaint products, problems and content should be synthetically considered when handling an online complaint. The designed procedure of the measure with high accuracy can be applied in other applications that consider multiple similarity features or linguistic levels.Originality/valueA method for linearly combining the similarities at all linguistic levels to accurately assess the overall similarities between online complaint cases is presented. This method is experimentally verified to be helpful to improve the accuracy of online complaint case retrieval. This is the first study that considers the accuracy of the similarity measures for online complaint case retrieval.

Journal

KybernetesEmerald Publishing

Published: Aug 7, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off