Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – Several research papers related to electricity price forecasting have been reported in the leading journals in last 20 years. The purpose of this paper is to present a comprehensive survey and comparison of these techniques. Design/methodology/approach – The present article provides an overview of the statistical short‐term price forecasting (STPF) models. The basic theory of these models, their further classification and their suitability to STPF has been discussed. Quantitative evaluation of the performance of these models in the framework of accuracy achieved and computation time taken has been performed. Some important observations of the literature survey and key issues regarding STPF methodologies are analyzed. Findings – It has been observed that price forecasting accuracy of the reported models in day‐ahead markets is better as compared to that in real time markets. From a comparative analysis perspective, there is no hard evidence of out‐performance of one model over all other models on a consistent basis for a very long period. In some of the studies, linear models like dynamic regression and transfer function have shown superior performance as compared to non‐linear models like artificial neural networks (ANNs). On the other hand, recent variations in ANNs by employing wavelet transformation, fuzzy logic and genetic algorithm have shown considerable improvement in forecasting accuracy. However more complex models need further comparative analysis. Originality/value – This paper is intended to supplement the recent survey papers, in which the researchers have restricted the scope to a bibliographical survey. Whereas, in this work, after providing detailed classification and chronological evolution of the STPF techniques, a comparative summary of various price‐forecasting techniques, across different electricity markets, is presented.
International Journal of Energy Sector Management – Emerald Publishing
Published: Nov 20, 2009
Keywords: Forecasting; Regression analysis; Electricity industry
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.