Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeThis paper aims to present a simplified solution method for the elasto-plastic consolidation problem under different stress paths.Design/methodology/approachFirst, a double-yield-surface model is introduced as the constitutive model framework, and a partial derivative coefficient sequence is obtained by using numerical approximation using Gauss nuclear function to construct a discretization constitutive model which can reflect the influence of different stress paths. Then, the model is introduced to Biot’s consolidation theory. Volumetric strain of each step as the right-hand term, the continuity equation is simplified as a Poisson equation and the fundamental solution is derived by the variable separation method. Based on it, a semi-analytical and semi-numerical method is presented and implemented in a finite element program.FindingsThe method is a simplified solution that is more convenient than traditional coupling stiffness matrix method. Moreover, the consolidation of the semi-infinite foundation model is analyzed. It is shown that the numerical method is sufficiently stable and can reflect the influence of stress path, loading distribution width and some other factors on the deformation of soil skeleton and pore water pressure.Originality/valueOriginal features of this research include semi-numerical semi-analytical consolidation method; pore water pressure and settlements of different stress paths are different; maximum surface uplift at 3.5a; and stress path is the main influence factor for settlement when loading width a > 10 m.
Engineering Computations – Emerald Publishing
Published: May 2, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.