Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Role of thermally stratified medium on a free convection flow from a rotating sphere

Role of thermally stratified medium on a free convection flow from a rotating sphere Purpose – The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in a stably thermally stratified medium. Design/methodology/approach – An implicit finite‐difference scheme in combination with the quasi‐linearization technique is applied to obtain the steady state non‐similar solutions of the governing boundary layer equations for flow and temperature fields. Findings – The numerical results indicate that the heat transfer rate at the wall decreases significantly with an increasing thermal stratification parameter, but its effect on the skin friction coefficients is rather minimum. In fact, the presence of thermal stratification of the medium influences the heat transfer at wall to be in opposite direction, that is, from fluids to the wall above a certain height. The heat transfer rate increases but the skin frictions decrease with the increase of Prandtl number. In particular, the effect of buoyancy force is much more sensitive for low Prandtl number fluids ( Pr = 0.7, air) than that of high Prandtl number fluids ( Pr = 7, water). Also the skin friction in rotating direction is less sensitive to the buoyancy force as the buoyancy force acts in the streamwise direction for the present study of thermally stratified medium. Research limitations/implications – The ambient temperature T ∞∞ is assumed to increase linearly with height $h$. The viscous dissipation term, which is usually small for natural convection flows, has been neglected in the energy equation. The flow is assumed to be axi‐symmetric. The Boussinesq approximation is invoked for the fluid properties to relate density changes to temperature changes, and to couple in this way the temperature field to the flow field. Practical implications – Free convection in a thermally stratified medium occurs in many environmental processes with temperature stratification, and in industrial applications within a closed chamber with heated walls. Also, free convections associated with heat rejection systems for long‐duration deep ocean powder modules where ocean environment is stratified are examples of such type. Originality/value – The research presented in this paper investigates the free convection flow on a sphere, which is rotating with a constant angular velocity along its vertical axis in a stably thermally stratified fluid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Numerical Methods for Heat & Fluid Flow Emerald Publishing

Role of thermally stratified medium on a free convection flow from a rotating sphere

Loading next page...
 
/lp/emerald-publishing/role-of-thermally-stratified-medium-on-a-free-convection-flow-from-a-IFScXEUpWq
Publisher
Emerald Publishing
Copyright
Copyright © 2010 Emerald Group Publishing Limited. All rights reserved.
ISSN
0961-5539
DOI
10.1108/09615531011008145
Publisher site
See Article on Publisher Site

Abstract

Purpose – The purpose of this paper is to study the influence of thermally stratified medium on a free convection flow from a sphere, which is rotating about the vertical axis, immersed in a stably thermally stratified medium. Design/methodology/approach – An implicit finite‐difference scheme in combination with the quasi‐linearization technique is applied to obtain the steady state non‐similar solutions of the governing boundary layer equations for flow and temperature fields. Findings – The numerical results indicate that the heat transfer rate at the wall decreases significantly with an increasing thermal stratification parameter, but its effect on the skin friction coefficients is rather minimum. In fact, the presence of thermal stratification of the medium influences the heat transfer at wall to be in opposite direction, that is, from fluids to the wall above a certain height. The heat transfer rate increases but the skin frictions decrease with the increase of Prandtl number. In particular, the effect of buoyancy force is much more sensitive for low Prandtl number fluids ( Pr = 0.7, air) than that of high Prandtl number fluids ( Pr = 7, water). Also the skin friction in rotating direction is less sensitive to the buoyancy force as the buoyancy force acts in the streamwise direction for the present study of thermally stratified medium. Research limitations/implications – The ambient temperature T ∞∞ is assumed to increase linearly with height $h$. The viscous dissipation term, which is usually small for natural convection flows, has been neglected in the energy equation. The flow is assumed to be axi‐symmetric. The Boussinesq approximation is invoked for the fluid properties to relate density changes to temperature changes, and to couple in this way the temperature field to the flow field. Practical implications – Free convection in a thermally stratified medium occurs in many environmental processes with temperature stratification, and in industrial applications within a closed chamber with heated walls. Also, free convections associated with heat rejection systems for long‐duration deep ocean powder modules where ocean environment is stratified are examples of such type. Originality/value – The research presented in this paper investigates the free convection flow on a sphere, which is rotating with a constant angular velocity along its vertical axis in a stably thermally stratified fluid.

Journal

International Journal of Numerical Methods for Heat & Fluid FlowEmerald Publishing

Published: Jan 12, 2010

Keywords: Convection; Flow; Heat transfer media; Temperature distribution

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$499/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month