Access the full text.
Sign up today, get DeepDyve free for 14 days.
The flexible mode transitions, multiple power sources and system uncertainty lead to challenges for mode transition control of four-wheel-drive hybrid powertrain. Therefore, the purpose of this paper is to improve dynamic performance and fuel economy in mode transition process for four-wheel-drive hybrid electric vehicles (HEVs), overcoming the influence of system uncertainty.Design/methodology/approachFirst, operation modes and transitions are analyzed and then dynamic models during mode transition process are established. Second, a robust mode transition controller based on radial basis function neural network (RBFNN) is proposed. RBFNN is designed as an uncertainty estimator to approximate lumped model uncertainty due to modeling error. Based on this estimator, a sliding mode controller (SMC) is proposed in clutch slipping phase to achieve clutch speed synchronization, despite disturbance of engine torque error, engine resistant torque and clutch torque. Finally, simulations are carried out on MATLAB/Cruise co-platform.FindingsCompared with routine control and SMC, the proposed robust controller can achieve better performance in clutch slipping time, engine torque error, vehicle jerk and slipping work either in nominal system or perturbed system.Originality/valueThe mode transition control of four-wheel-drive HEVs is investigated, and a robust controller based on RBFNN estimation is proposed. Compared results show that the proposed controller can improve dynamic performance and fuel economy effectively in spite of the existence of uncertainty.
COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Oct 8, 2021
Keywords: Robust control; RBFNN estimation; SMC; Mode transition; Four-wheel-drive HEVs; Control systems; Mechatronics; Robust adaptive control; Network topology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.