Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Robust DC and efficient time‐domain fast fault simulation

Robust DC and efficient time‐domain fast fault simulation Purpose – Imperfections in manufacturing processes may cause unwanted connections (faults) that are added to the nominal, “golden”, design of an electronic circuit. By fault simulation one simulates all situations. Normally this leads to a large list of simulations in which for each defect a steady‐state (direct current (DC)) solution is determined followed by a transient simulation. The purpose of this paper is to improve the robustness and the efficiency of these simulations. Design/methodology/approach – Determining the DC solution can be very hard. For this the authors present an adaptive time‐domain source stepping procedure that can deal with controlled sources. The method can easily be combined with existing pseudo‐transient procedures. The method is robust and efficient. In the subsequent transient simulation the solution of a fault is compared to a golden, fault‐free, solution. A strategy is developed to efficiently simulate the faulty solutions until their moment of detection. Findings – The paper fully exploits the hierarchical structure of the circuit in the simulation process to bypass parts of the circuit that appear to be unaffected by the fault. Accurate prediction and efficient solution procedures lead to fast fault simulation. Originality/value – The fast fault simulation helps to store a database with detectable deviations for each fault. If such a detectable output “matches” a result of a product that has been returned because of malfunctioning it helps to identify the subcircuit that may contain the real fault. One aims to detect as much as possible candidate faults. Because of the many options the simulations must be very efficient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/robust-dc-and-efficient-time-domain-fast-fault-simulation-mMBdpH54jc
Publisher
Emerald Publishing
Copyright
Copyright © 2014 Emerald Group Publishing Limited. All rights reserved.
ISSN
0332-1649
DOI
10.1108/COMPEL-12-2012-0364
Publisher site
See Article on Publisher Site

Abstract

Purpose – Imperfections in manufacturing processes may cause unwanted connections (faults) that are added to the nominal, “golden”, design of an electronic circuit. By fault simulation one simulates all situations. Normally this leads to a large list of simulations in which for each defect a steady‐state (direct current (DC)) solution is determined followed by a transient simulation. The purpose of this paper is to improve the robustness and the efficiency of these simulations. Design/methodology/approach – Determining the DC solution can be very hard. For this the authors present an adaptive time‐domain source stepping procedure that can deal with controlled sources. The method can easily be combined with existing pseudo‐transient procedures. The method is robust and efficient. In the subsequent transient simulation the solution of a fault is compared to a golden, fault‐free, solution. A strategy is developed to efficiently simulate the faulty solutions until their moment of detection. Findings – The paper fully exploits the hierarchical structure of the circuit in the simulation process to bypass parts of the circuit that appear to be unaffected by the fault. Accurate prediction and efficient solution procedures lead to fast fault simulation. Originality/value – The fast fault simulation helps to store a database with detectable deviations for each fault. If such a detectable output “matches” a result of a product that has been returned because of malfunctioning it helps to identify the subcircuit that may contain the real fault. One aims to detect as much as possible candidate faults. Because of the many options the simulations must be very efficient.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jul 1, 2014

Keywords: Sensitivity analysis; Circuit analysis; Fault analysis

References